面试
文章平均质量分 91
Happy丶lazy
这个作者很懒,什么都没留下…
展开
-
nlp面试汇总
这些面试题是在各个平台上搜取的,方便大家面试的时候使用,主要偏向nlp方向词向量词向量平均法做分类的优劣势是什么?优势词向量平均的方法做分类模型,主要的优势是模型简单有参数模型,无参数模型都可以尝试使用,模型选择大模型速度极快,训练的参数量少在语句少的场景下,效果好劣势在语句长的长的场景下,效果会变的很差语句长,分出的词多,词越多,信息量越杂,简单的做平均的话,重要的词的信息会在平均的过程中极大的被消弱,从而分类效果差词向量的基础上如何做优化?映入一个新的向量,做attent原创 2021-10-28 10:02:15 · 6259 阅读 · 0 评论 -
个人面试经历
当分类问题样本不均衡时使用什么评价指标精确率我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本非常的严格,不容易筛选过去精确率更高表示限制性越大,越严格召回率召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能广泛,要求说明不太严格,容易达成L1和L2的区别L1是模型各个参数的绝对值之和。L2是模型各个参数的平方和的开方值。L1会趋向于产生少量的特征,而其他的特征都是0.因为最优的参数值很大概率出现在坐标轴上,这样就会原创 2020-10-27 19:09:15 · 158 阅读 · 0 评论 -
机器学习面试-Keras/tensorflow
● MXNet和Tensorflow的区别参考回答:MXNet有两个主要的进程server和worker,worker之间不能进行通信,只能通过server互相影响。Tensorflow有worker,server,client三种进程,worker是可以相互通信的,可以根据op的依赖关系主动收发数据。MXNet常用来做数据并行,每个GPU设备上包含了计算图中所有的op,而Tensorfl...翻译 2019-05-21 07:56:17 · 2143 阅读 · 0 评论 -
机器学习面试-Libsvm
● 检测20类物体,多少张训练集,怎么训练参考回答:多分类问题,保证各类别的样例比,提取特征,用libsvm等做多分类。● lightgbm优势参考回答:1)更快的训练速度和更高的效率:LightGBM使用基于直方图的算法。2)更低的内存占用:使用离散的箱子(bins)保存并替换连续值导致更少的内存占用。3)更高的准确率(相比于其他任何提升算法):它通过leaf-wise分裂方...翻译 2019-05-21 07:55:17 · 184 阅读 · 0 评论 -
机器学习面试- Scikit-learn
● Focal Loss 介绍一下参考回答:Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。损失函数形式:Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,...翻译 2019-05-21 07:54:12 · 1516 阅读 · 0 评论 -
机器学习面试-其他重要算法
● 问题:HMM隐马尔可夫模型的参数估计方法是?参考回答:EM算法解析:期望最大化(Expectation-Maximum,EM)算法● 问题:Bootstrap方法是什么?参考回答:从一个数据集中有放回的抽取N次,每次抽M个。解析:Bagging算法基于bootstrap。面试时结合Bagging算法讲述会更好。● 问题:如何防止过拟合?参考回答:1.早停...翻译 2019-05-21 07:53:02 · 219 阅读 · 0 评论 -
机器学习面试-模型融合和提升的算法
● bagging和boosting的区别参考回答:Bagging是从训练集中进行子抽样组成每个基模型所需要的子训练集,然后对所有基模型预测的结果进行综合操作产生最终的预测结果。Boosting中基模型按次序进行训练,而基模型的训练集按照某种策略每次都进行一定的转化,最后以一定的方式将基分类器组合成一个强分类器。Bagging的训练集是在原始集中有放回的选取,而Boosting每轮...翻译 2019-05-21 07:51:21 · 1154 阅读 · 0 评论 -
机器学习面试- 推荐系统的常用算法
● 请你说一说推荐算法,fm,lr,embedding参考回答:推荐算法:基于人口学的推荐、基于内容的推荐、基于用户的协同过滤推荐、基于项目的协同过滤推荐、基于模型的协同过滤推荐、基于关联规则的推荐FM:LR:逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数g(z),即先把特征线性求和,然后使用函数g(z)作为假设函数来预测。g(z)可以将连续值映射...翻译 2019-05-21 07:50:20 · 3590 阅读 · 0 评论 -
机器学习面试-处理聚类问题
● 什么是DBSCAN参考回答:DBSCAN是一种基于密度的空间聚类算法,它不需要定义簇的个数,而是将具有足够高密度的区域划分为簇,并在有噪声的数据中发现任意形状的簇,在此算法中将簇定义为密度相连的点的最大集合。● k-means算法流程参考回答:从数据集中随机选择k个聚类样本作为初始的聚类中心,然后计算数据集中每个样本到这k个聚类中心的距离,并将此样本分到距离最小的聚类中心所...翻译 2019-05-21 07:49:08 · 2006 阅读 · 0 评论 -
机器学习面试-处理回归问题
● L1和L2正则化的区别参考回答:L1是模型各个参数的绝对值之和,L2为各个参数平方和的开方值。L1更趋向于产生少量的特征,其它特征为0,最优的参数值很大概率出现在坐标轴上,从而导致产生稀疏的权重矩阵,而L2会选择更多的矩阵,但是这些矩阵趋向于0。● 问题:LossFunction有哪些,怎么用?参考回答:平方损失(预测问题)、交叉熵(分类问题)、hinge损失(SVM支持...翻译 2019-05-21 07:47:54 · 1221 阅读 · 0 评论 -
机器面试-处理分类问题
● 交叉熵公式参考回答:交叉熵:设p(x)、q(x)是X中取值的两个概率分布,则p对q的相对熵是:在一定程度上,相对熵可以度量两个随机变量的“距离”,且有D(p||q) ≠D(q||p)。另外,值得一提的是,D(p||q)是必然大于等于0的。互信息:两个随机变量X,Y的互信息定义为X,Y的联合分布和各自独立分布乘积的相对熵,用I(X,Y)表示:且有I(X,Y)=D(P(X,...翻译 2019-05-21 07:45:30 · 1792 阅读 · 0 评论 -
机器学习面试-数学基础
微积分SGD,Momentum,Adagard,Adam原理SGD为随机梯度下降,每一次迭代计算数据集的mini-batch的梯度,然后对参数进行跟新。Momentum参考了物理中动量的概念,前几次的梯度也会参与到当前的计算中,但是前几轮的梯度叠加在当前计算中会有一定的衰减。Adagard在训练的过程中可以自动变更学习的速率,设置一个全局的学习率,而实际的学习率与以往的参数模和...翻译 2019-05-21 07:38:02 · 2652 阅读 · 0 评论