伽罗瓦理论(3)

伽罗瓦理论(1)
伽罗瓦理论(2)
伽罗瓦理论(4)

伽罗瓦基本定理

有了前面的刻画,我们就可以进行进一步的探索。伽罗瓦基本定理,将伽罗瓦扩张的中间域和伽罗瓦群的子群联系起来,对伽罗瓦扩张进行分解。为什么是用群,而不是多项式呢?似乎多项式更加合适,但是多项式不具有不变性。

定理(伽罗瓦基本定理) E ⊃ F E\supset F EF为伽罗瓦扩张, G = G a l ( E / F ) G=Gal(E/F) G=Gal(E/F)为伽罗瓦群,则子群和中间域通过映射 H ↦ E H H\mapsto E^{H} HEH M ↦ G a l ( E / M ) M\mapsto Gal(E/M) MGal(E/M)建立起一一对应。而且这个对应具有以下性质:

  1. 集合上反包含: H 1 ⊃ H 2 ⇒ E H 1 ⊂ E H 2 H_1\supset H_2\Rightarrow E^{H_1}\subset E^{H_2} H1H2EH1EH2
  2. 保持数值不变量: ( H 1 : H 2 ) = [ E H 2 : E H 1 ] (H_1: H_2)=[E^{H_2}: E^{H_1}] (H1:H2)=[EH2:EH1]
  3. 共轭对应: σ H σ − 1 ↦ σ E H \sigma H \sigma^{-1}\mapsto \sigma E^{H} σHσ1σEH
  4. 正规对应: H H H为正规子群 ⇔ E H \Leftrightarrow E^H EH是正规扩张(因而是伽罗瓦扩张),此时有 G / H ≃ G a l ( E H / F ) G/H\simeq Gal(E^H/F) G/HGal(EH/F)

由此,如果有群的正规列: { 1 } = H n ⊂ ⋯ ⊂ H 2 ⊂ H 1 ⊂ H 0 = G \{1\}=H_n\subset \cdots\subset H_2\subset H_1\subset H_0=G {1}=HnH2H1H0=G
则可以得到域的分解:
E ⊃ ⋯ ⊃ E H 2 ⊃ E H 1 ⊃ E G = F E\supset\cdots\supset E^{H_2}\supset E^{H_1}\supset E^{G}=F EEH2EH1EG=F
要是群的分解粒度足够细,则域的分解粒度也会很细,当细到单扩张的时候,就比较容易理解了。更有意义的是,通过这种对应,可以将域列的存在转化为群列的存在,从而达到整体的刻画。

证明 H = G a l ( E / E H ) H=Gal(E/E^H) H=Gal(E/EH):设 I = G a l ( E / E H ) , I=Gal(E/E^H), I=Gal(E/EH), H ⊂ I H\subset I HI。因为 E / E H E/E^H E/EH是伽罗瓦扩张,所以由分裂域刻画有 ∣ I ∣ = [ E : E H ] |I|=[E:E^H] I=[E:EH],于是根据伽罗瓦理论(2)中的引理有 ∣ I ∣ ≤ ∣ H ∣ |I|\leq |H| IH,因此 H = I . H=I. H=I.

M = E G a l ( E / M ) M=E^{Gal(E/M)} M=EGal(E/M):这个只要说明 E / M E/M E/M是伽罗瓦扩张,这个通过分裂域刻画就行。

1是显然的。2根据分裂域的等式也是显然。3要证明 G a l ( E / σ ( E H ) ) = σ H σ − 1 Gal(E/\sigma(E^H))=\sigma H\sigma^{-1} Gal(E/σ(EH))=σHσ1,首先有 ⊃ \supset 关系,然后考虑阶数,因为 E = σ ( E ) E=\sigma(E) E=σ(E),容易知道左边群的阶和 G a l ( E / E H ) Gal(E/E^H) Gal(E/EH)的阶相等,右边群的阶自然和 H H H的阶相等。

4根据3来看。看 ⇒ \Rightarrow 部分,由3知道 σ ( E H ) ⊂ E H \sigma(E^H)\subset E^H σ(EH)EH,再直接根据伽罗瓦理论(2)中的引理得到任何 E H E^H EH中的元素都是正规的。看 ⇐ \Leftarrow 部分, σ ∈ G \sigma\in G σG 。每一个 E H E^H EH同构都可以扩充为 E E E同构,扩充方式有 ∣ H ∣ |H| H种,从而由 G a l ( E H / F ) Gal(E^H/F) Gal(EH/F)扩充出来的同构总共有 ∣ G a l ( E H / F ) ∣ ∣ H ∣ = [ E H : F ] [ E : E H ] = [ E : F ] = ∣ G ∣ |Gal(E^H/F)||H|=[E^H:F][E:E^H]=[E:F]=|G| Gal(EH/F)H=[EH:F][E:EH]=[E:F]=G个,则从 G G G G a l ( E H / F ) Gal(E^H/F) Gal(EH/F)有一个限制满同态,其核就是 H H H. 从而每个 σ \sigma σ都可以限制到 E H E^H EH上,因而有 σ ( E H ) ⊂ E H \sigma(E^H)\subset E^H σ(EH)EH,再根据3就行了。

总结:可以看到证明到最后,都归约到最基本的线性代数和多项式理论上面了。

可解性定理

定理(可解性) 设域 F F F的特征为0,则 f ∈ F [ x ] − F f\in F[x]-F fF[x]F根式可解当且仅当 f f f的分裂域对应的伽罗瓦群可解。

对这个定理的证明自然分为两个部分。先看必要性。如果 f f f根式可解,则有域塔

F = F 0 ⊂ F 1 ⊂ ⋯ ⊂ F m F=F_0\subset F_1\subset \cdots \subset F_m F=F0F1Fm

使得:

  • f f f F m F_m Fm中分裂
  • F i = F i − 1 [ α i ] , α i r i ∈ F i − 1 F_i=F_{i-1}[\alpha_i],\alpha_i^{r_i}\in F_{i-1} Fi=Fi1[αi],αiriFi1

第一点保证根都在 F m F_m Fm中,第二点保证根都可以表示成系数中元素的有限次根式嵌套。

N = ∏ i r i N=\prod_ir_i N=iri ζ \zeta ζ N N N次本原单位根,于是我们有域塔

F ⊂ F ′ = F [ ζ ] ⊂ F 1 ′ = F ′ [ α 1 ] ⊂ ⋯ ⊂ F m ′ = F m − 1 ′ [ α m ] F\subset F^{\prime}=F[\zeta]\subset F_1^{\prime}=F^{\prime}[\alpha_1]\subset \cdots \subset F_m^{\prime}=F_{m-1}^{\prime}[\alpha_{m}] FF=F[ζ]F1=F[α1]Fm=Fm1[αm]

E = F [ x 1 , ⋯   , x n ] ⊂ F m ′ E=F[x_1,\cdots,x_n]\subset F_m^{\prime} E=F[x1,,xn]Fm为分裂域,则伽罗瓦群为 G = G a l ( E / F ) G=Gal(E/F) G=Gal(E/F)。我们要证明这个群是可解的。但是显然这并不友好,域塔是关于 F m ′ F_m^{\prime} Fm的。选择 F m ′ F_m^{\prime} Fm作为切入点,构造 F F F的一个包含 F m ′ F_m^{\prime} Fm的伽罗瓦扩张 K K K,这样 G G G H = G a l ( K / F ) H=Gal(K/F) H=Gal(K/F)的商群,只用证明 H H H可解就行了。由于特征为0,极小多项式肯定是可分的,所以将 ζ , α i , i = 1 , 2 , ⋯   , m \zeta,\alpha_i,i=1,2,\cdots,m ζ,αi,i=1,2,,m的极小多项式去掉重复的相乘后,还是可分的,这个多项式的分裂域作为 K K K就行。

这个 K K K实际上就是 F F F添加了全部 ζ , α i \zeta,\alpha_i ζ,αi和它们的共轭后生成的。设 σ ∈ G a l ( K / F ) = { σ 1 , σ 2 , ⋯   , σ l } \sigma\in Gal(K/F)=\{\sigma_1,\sigma_2,\cdots,\sigma_l\} σGal(K/F)={σ1,σ2,,σl},则 ( σ ( α i ) ) r i = σ ( α i r i ) ∈ σ ( F i − 1 ′ ) = F [ σ ( ζ ) , ⋯   , σ ( α i − 1 ) ] (\sigma(\alpha_i))^{r_i}=\sigma(\alpha_i^{r_i})\in \sigma(F_{i-1}^{\prime})=F[\sigma(\zeta),\cdots,\sigma(\alpha_{i-1})] (σ(αi))ri=σ(αiri)σ(Fi1)=F[σ(ζ),,σ(αi1)]

我们依次在 F F F中添加以下元素来构建域塔:

ζ , σ 1 ( ζ ) , ⋯   , σ l ( ζ ) ; α 1 , σ 1 ( α 1 ) , ⋯   , σ l ( α 1 ) ; α m , σ 1 ( α m ) , ⋯   , σ l ( α m ) \zeta, \sigma_1(\zeta),\cdots,\sigma_l(\zeta);\alpha_1,\sigma_1(\alpha_1),\cdots,\sigma_l(\alpha_1);\alpha_m,\sigma_1(\alpha_m),\cdots,\sigma_l(\alpha_m) ζ,σ1(ζ),,σl(ζ)α1,σ1(α1),,σl(α1)αm,σ1(αm),,σl(αm)

令得到的域塔为
F = E 0 ⊂ E 1 ⊂ ⋯ ⊂ E t = K F=E_0\subset E_1\subset\cdots\subset E_t=K F=E0E1Et=K

则相邻的扩张都是abel扩张(伽罗瓦群为abel群的伽罗瓦扩张,这个地方需要补充说明),从而对应的群正规列
G = G a l ( K / E 0 ) ⊃ G a l ( K / E 1 ) ⊃ ⋯ ⊃ { 1 } G=Gal(K/E_0)\supset Gal(K/E_1)\supset \cdots \supset \{1\} G=Gal(K/E0)Gal(K/E1){1}

是可解的。

再看充分性 E E E为分裂域, G G G为伽罗瓦群。首先还是要把基域扩大到包含 n = ∣ G ∣ n=|G| n=G次本原单位根(在这之前需要说明 G G G是有限群)。设 ζ \zeta ζ n n n次本原单位根, F ′ = F [ ζ ] F^{\prime}=F[\zeta] F=F[ζ]. 于是 G ′ = G a l ( E / F ′ ) < G G^{\prime}=Gal(E/F^{\prime})<G G=Gal(E/F)<G也是可解群。于是有群正规列:
{ 1 } ⊂ G 1 ⊂ G 2 ⊂ ⋯ ⊂ G m = G ′ \{1\}\subset G_1\subset G_2\subset \cdots \subset G_m=G^{\prime} {1}G1G2Gm=G

使得 G k / G k − 1 G_k/G_{k-1} Gk/Gk1是有限循环群。于是,对应有域塔:
E = F 0 ⊃ F 1 ⊃ F 2 ⋯ ⊃ F m = F ′ E=F_{0}\supset F_{1}\supset F_{2} \cdots \supset F_{m}= F^{\prime} E=F0F1F2Fm=F

而且有 F k − 1 / F k F_{k-1}/F_{k} Fk1/Fk是Galois扩张,对应的Galois群为
G a l ( F k − 1 / F k ) ≃ G k / G k − 1 Gal(F_{k-1}/F_k)\simeq G_k/G_{k-1} Gal(Fk1/Fk)Gk/Gk1,是一个有限循环群。我们只要证明此时一定有某个 α k ∈ F k − 1 \alpha_k\in F_{k-1} αkFk1使得 F k − 1 = F k [ α k ] , α k r k ∈ F k F_{k-1}=F_k[\alpha_k],\alpha_k^{r_k}\in F_k Fk1=Fk[αk]αkrkFk.另外再把 F ′ = F [ ζ ] F^{\prime}=F[\zeta] F=F[ζ]考虑进来,就可以完成整个证明。

所以接下来的工作,就是研究循环扩张和分圆扩张。

分圆扩张

E E E的特征为 p > 0 , n = p e q p>0,n=p^eq p>0,n=peq p p p的倍数, x n = 1 x^n=1 xn=1 E E E上分裂,根集记为 N ( n ) N(n) N(n) y p = 1 ⇒ ( y − 1 ) p = 0 ⇒ y = 1 y^p=1\Rightarrow (y-1)^p=0\Rightarrow y=1 yp=1(y1)p=0y=1。从而 x q = 1 x^q=1 xq=1。若 q = r s q=rs q=rs为两个不同素数的乘积,则 q q q阶元的个数

N ( q ) − N ( r ) − N ( s ) + N ( 1 ) = r s − r − s + 1 = ( r − 1 ) ( s − 1 ) > 0 \begin{aligned} &N(q)-N(r)-N(s)+N(1)\\ =&rs-r-s+1\\ =&(r-1)(s-1)>0 \end{aligned} ==N(q)N(r)N(s)+N(1)rsrs+1(r1)(s1)>0

q = r 2 q=r^2 q=r2,则 q q q阶元的个数
N ( q ) − N ( r ) = r 2 − r = r ( r − 1 ) > 0 N(q)-N(r)=r^2-r=r(r-1)>0 N(q)N(r)=r2r=r(r1)>0

q = r 2 s q=r^2s q=r2s,则 q q q阶元的个数
N ( q ) − N ( r 2 ) − N ( r s ) + N ( r ) = q − q s − q r + q r s = q ( 1 − 1 s ) ( 1 − 1 r ) > 0 \begin{aligned} &N(q)-N(r^2)-N(rs)+N(r)\\ =&q-\frac{q}{s}-\frac{q}{r}+\frac{q}{rs}\\ =&q(1-\frac{1}{s})(1-\frac{1}{r})>0 \end{aligned} ==N(q)N(r2)N(rs)+N(r)qsqrq+rsqq(1s1)(1r1)>0

q = r 1 e 1 r 2 e 2 q=r_1^{e_1}r_2^{e_2} q=r1e1r2e2,则 q q q阶元的个数
N ( q ) − N ( q r 1 ) − N ( q r 2 ) + N ( q r 1 r 2 ) = q − q r 1 − q r 2 + q r 1 r 2 = q ( 1 − 1 r 1 ) ( 1 − 1 r 2 ) > 0 \begin{aligned} &N(q)-N(\frac{q}{r_1})-N(\frac{q}{r_2})+N(\frac{q}{r_1r_2})\\ =&q-\frac{q}{r_1}-\frac{q}{r_2}+\frac{q}{r_1r_2}\\ =&q(1-\frac{1}{r_1})(1-\frac{1}{r_2})>0 \end{aligned} ==N(q)N(r1q)N(r2q)+N(r1r2q)qr1qr2q+r1r2qq(1r11)(1r21)>0

q = r 1 e 1 r 2 e 2 ⋯ r m e m q=r_1^{e_1}r_2^{e_2}\cdots r_m^{e_m} q=r1e1r2e2rmem,则 q q q阶元的个数
N ( q ) − ∑ i N ( q r i ) + ∑ i , j N ( q r i r j ) − ⋯ + ( − 1 ) m N ( q r 1 r 2 ⋯ r m ) = q − ∑ i q r i + ∑ i , j q r i r j − ⋯ + ( − 1 ) m q r 1 r 2 ⋯ r m = q ( 1 − 1 r 1 ) ( 1 − 1 r 2 ) ⋯ ( 1 − 1 r m ) > 0 \begin{aligned} &N(q)-\sum_iN(\frac{q}{r_i})+\sum_{i,j}N(\frac{q}{r_ir_j})-\cdots+(-1)^mN(\frac{q}{r_1r_2\cdots r_m})\\ =&q-\sum_i\frac{q}{r_i}+\sum_{i,j}\frac{q}{r_ir_j}-\cdots+(-1)^m\frac{q}{r_1r_2\cdots r_m}\\ =&q(1-\frac{1}{r_1})(1-\frac{1}{r_2})\cdots (1-\frac{1}{r_m})>0 \end{aligned} ==N(q)iN(riq)+i,jN(rirjq)+(1)mN(r1r2rmq)qiriq+i,jrirjq+(1)mr1r2rmqq(1r11)(1r21)(1rm1)>0

以上证明了

引理 n > 0 n>0 n>0次本原单位根存在当且仅当考虑的系数域 F F F的特征为0或者为 p ∤ n p \not | n pn.

ζ \zeta ζ n n n次本原单位根, F [ ζ ] / F F[\zeta]/F F[ζ]/F称为分圆扩张。这部分的主要结果就是说明分圆扩张的Galois群是Abel群。

定理 F F F特征为0或者特征 p p p不整除 n n n,则对分圆扩张 F [ ζ ] / F F[\zeta]/F F[ζ]/F有单射
G a l ( F [ ζ ] / F ) ↪ ( Z / n Z ) × Gal(F[\zeta]/F)\hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times} Gal(F[ζ]/F)(Z/nZ)×

证明 σ ∈ G a l ( F [ ζ ] / F ) \sigma\in Gal(F[\zeta]/F) σGal(F[ζ]/F) ζ ↦ ζ i , i ∈ ( Z / n Z ) × \zeta\mapsto \zeta^i, i\in (\mathbb{Z}/n\mathbb{Z})^{\times} ζζi,i(Z/nZ)×唯一确定,这样就有了一个映射 G a l ( F [ ζ ] / F ) → ( Z / n Z ) × Gal(F[\zeta]/F)\rightarrow (\mathbb{Z}/n\mathbb{Z})^{\times} Gal(F[ζ]/F)(Z/nZ)×

由于 σ τ ( ζ ) = ( ζ j ) i = ζ i j \sigma \tau(\zeta)=(\zeta^{j})^{i}=\zeta^{ij} στ(ζ)=(ζj)i=ζij,此映射是群同态。 i = 1 i=1 i=1必然有 σ = i d \sigma=id σ=id,从而是单同态。

循环扩张

E / F E/F E/F的Galois群为循环群,则称为循环扩张。循环扩张的重要性质是,其扩张是基本的根式扩张。

F F F包含 n > 1 n>1 n>1次本原单位根 ζ \zeta ζ α n = b ∈ F \alpha^n=b\in F αn=bF n n n为满足此性质的最小正整数。

σ ∈ G a l ( F [ α ] / F ) ⇒ σ ( α ) = ζ i α , i ∈ Z / n Z \sigma\in Gal(F[\alpha]/F)\Rightarrow \sigma(\alpha)=\zeta^i\alpha,i\in\mathbb{Z}/n\mathbb{Z} σGal(F[α]/F)σ(α)=ζiα,iZ/nZ。这样就确定了一个映射。对于两个 σ , τ ∈ G a l ( F [ α ] / F ) ⇒ σ τ ( α ) = ζ j ( ζ i α ) = ζ i + j α \sigma,\tau\in Gal(F[\alpha]/F)\Rightarrow \sigma\tau(\alpha)=\zeta^j(\zeta^i\alpha)=\zeta^{i+j}\alpha σ,τGal(F[α]/F)στ(α)=ζj(ζiα)=ζi+jα,于是这个映射是群同态。这个同态还是单的。设同态像为 d Z / n Z d\mathbb{Z}/n\mathbb{Z} dZ/nZ,则 σ ( α n d ) = α n d , σ ∈ G a l ( F [ α ] / F ) \sigma(\alpha^{\frac{n}{d}})=\alpha^{\frac{n}{d}},\sigma\in Gal(F[\alpha]/F) σ(αdn)=αdn,σGal(F[α]/F)。由于
x n − b ∈ F [ x ] x^n-b\in F[x] xnbF[x] 是可分多项式, F [ α ] F[\alpha] F[α]是可分多项式的分裂域,所以是Galois扩张, α n d ∈ F \alpha^{\frac{n}{d}}\in F αdnF,这与 n n n的最小性矛盾。因此此同态是同构。

反过来,如果Galois扩张 G a l ( E / F ) ≃ Z / n Z Gal(E/F)\simeq \mathbb{Z}/n\mathbb{Z} Gal(E/F)Z/nZ,生成元为 σ \sigma σ。群特征 σ : E × → ∼ E × \sigma:E^{\times}\xrightarrow{\sim}E^{\times} σ:E× E×,且 { i d , σ , σ 2 , ⋯   , σ n − 1 } 互 不 相 同 , \{id, \sigma,\sigma^2,\cdots,\sigma^{n-1}\}互不相同, {id,σ,σ2,,σn1}由Dedekinds定理,其非零线性组合 τ = ∑ i = 0 n − 1 ζ i σ i \tau=\sum_{i=0}^{n-1}\zeta^{i}\sigma^i τ=i=0n1ζiσi不为0,于是存在 γ ∈ E × \gamma\in E^{\times} γE×使得 α = τ ( γ ) ≠ 0 \alpha=\tau(\gamma)\neq 0 α=τ(γ)=0。又
σ ( α ) = ∑ i = 0 n − 1 ζ i σ i + 1 ( γ ) = ζ − 1 τ ( γ ) = ζ − 1 α \sigma(\alpha)=\sum_{i=0}^{n-1}\zeta^{i}\sigma^{i+1}(\gamma)=\zeta^{-1}\tau(\gamma)=\zeta^{-1}\alpha σ(α)=i=0n1ζiσi+1(γ)=ζ1τ(γ)=ζ1α

从而 σ ( α n ) = α n \sigma(\alpha^n)=\alpha^n σ(αn)=αn α n ∈ F \alpha^n\in F αnF。因为 n n n是满足此性质的最小正整数,由前证,知道 G a l ( F [ α ] / F ) ≃ Z / n Z Gal(F[\alpha]/F)\simeq \mathbb{Z}/n\mathbb{Z} Gal(F[α]/F)Z/nZ,从而 E = F [ α ] E=F[\alpha] E=F[α]

以上证明了

定理 F F F包含 n > 1 n>1 n>1次本原单位根 ζ \zeta ζ E / F E/F E/F为Galois扩张且 G a l ( E / F ) ≃ Z / n Z Gal(E/F)\simeq \mathbb{Z}/n\mathbb{Z} Gal(E/F)Z/nZ(循环扩张)当且仅当 E = F [ α ] , α n ∈ F E=F[\alpha],\alpha^n\in F E=F[α],αnF n n n为满足此条件的最小正整数。

伽罗瓦理论是一种独特且深奥的数学理论,起源于19世纪初法国数学家伽罗瓦的研究成果。这一理论主要研究代数方程在进行变换时的性质和限制。 这本书《伽罗瓦理论:天才的激情》是对伽罗瓦理论的系统性的介绍。书中深入浅出地解释了伽罗瓦理论的核心概念和关键思想。读者可以通过这本书了解到伽罗瓦理论的形成过程、研究内容以及应用领域。 在书中,作者旨在向读者展示伽罗瓦理论为数学领域带来的重大变革。伽罗瓦理论颠覆了传统代数方程的研究方法,引入了一种全新的思维方式。通过将方程的解与对称群相联系,伽罗瓦理论揭示了方程的可解性与对称性之间的关系。 伽罗瓦理论的重要性不仅仅体现在数学领域,它也在物理学、密码学等其他领域发挥着重要作用。通过深入理解伽罗瓦理论,我们能够更好地理解自然界中的各种现象和规律,并能够应用于实际问题的求解。 这本书的价值在于它提供了一个全面而系统的讨论伽罗瓦理论的平台。不仅仅适合具有数学背景的专业人士,也适合对数学感兴趣的非专业读者。通过阅读这本书,读者可以从中感受到伽罗瓦理论给数学领域带来的重要而深远的影响,并有助于培养抽象思维和解决问题的能力。 总之,《伽罗瓦理论:天才的激情》是一本值得一读的数学著作。它向读者展示了数学的奥妙和美妙之处,深入浅出地解释了复杂的理论,使读者在享受数学乐趣的同时,提高自身的数学素养。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值