Convex Optimization 读书笔记 (7)

Chapter8: Geometric problems

8.1 Projection on a set

The distance of a point x 0 ∈ R n x_0 ∈ \mathbf{R}^n x0Rn to a closed set C ⊆ R n C⊆\mathbf{R}^n CRn, in the norm ∥ ⋅ ∥ ∥·∥ , is defined as
d i s t ( x 0 , C ) = inf ⁡ { ∣ ∣ x 0 − x ∣ ∣ ∣ x ∈ C } {\rm \bold{dist}}(x_0,C)=\inf\{ ||x_0-x|| \mid x\in C \} dist(x0,C)=inf{x0xxC}We refer to any point z ∈ C z ∈ C zC which is closest to $x_0 $ satisfies ∥ z − x 0 ∥ = d i s t ( x 0 , C ) ∥z − x_0∥ = dist(x_0, C) zx0=dist(x0,C), as a projection of x 0 x_0 x0 on C C C.

8.1.1 Projecting a point on a convex set

If C C C is convex, then we can compute the projection P C ( x 0 ) P_C(x_0) PC(x0) and the distance d i s t ( x 0 , C ) {\rm \bold{dist}}(x_0,C) dist(x0,C) by solving a convex optimization problem:
m i n i m i z e      ∣ ∣ x − x 0 ∣ ∣ s u b j e c t   t o      f i ( x ) ≤ 0 ,      i = 1 , . . . m A x = b \begin{aligned} {\rm minimize} \ \ \ \ & ||x-x_0|| \\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0, \ \ \ \ i=1,...m \\ & Ax=b \end{aligned} minimize    subject to    xx0fi(x)0,    i=1,...mAx=b

8.1.2 Separating a point and a convex set

If P C ( x 0 ) P_C(x_0) PC(x0) denotes the Euclidean projection of x 0 x_0 x0 on C C C, where x 0 ∉ C x_0 \notin C x0/C, then the hyperplane
( P C ( x 0 ) − x 0 ) T ( x − 1 2 ( x 0 + P C ( x 0 ) ) ) = 0 (P_C (x_0) − x_0)^T (x − \frac{1}{2}(x_0 + P_C (x_0))) = 0 (PC(x0)x0)T(x21(x0+PC(x0)))=0(strictly) separates x 0 x_0 x0 from C C C.

In other norms, the clearest link between the projection problem and the separating hyperplane problem is via Lagrange duality.

8.1.3 Projection and separation via indicator and support functions

Define indicator function I C I_C IC and the support function S C S_C SC of the set C C C:
S C ( x ) = sup ⁡ y ∈ C x T y I C ( x ) = { 0 ,    x ∈ C ∞ ,    x ∉ C S_C(x)=\sup_{y\in C} x^Ty\\ I_C(x)=\left\{ \begin{array}{rcl} 0, \ \ & x\in C \\ \infty, \ \ & x\notin C\end{array} \right. SC(x)=yCsupxTyIC(x)={0,  ,  xCx/CThe problem of projecting x 0 x_0 x0 on a closed convex set C C C can be expressed compactly as
m i n i m i z e      ∣ ∣ x − x 0 ∣ ∣ s u b j e c t   t o      I C ( x ) ≤ 0 \begin{aligned} {\rm minimize} \ \ \ \ & ||x-x_0|| \\ {\rm subject \ to} \ \ \ \ & I_C(x)\leq0 \end{aligned} minimize    subject to    xx0IC(x)0The dual function of this problem is
g ( z , λ ) = { z T x 0 − S C ( z ) ,      ∣ ∣ z ∣ ∣ ∗ ≤ 1 ,    λ ≥ 0 − ∞ ,      o t h e r w i s e g(z,\lambda)=\left\{ \begin{array}{rcl} z^Tx_0-S_C(z), & \ \ \ \ ||z||_*\leq1, \ \ \lambda \geq0 \\ -\infty, & \ \ \ \ {\rm otherwise} \end{array} \right. g(z,λ)={zTx0SC(z),,    z1,  λ0    otherwiseso we obtain the dual problem
m a x i m i z e      z T x 0 − S C ( z ) s u b j e c t   t o      ∣ ∣ z ∣ ∣ ∗ ≤ 1 \begin{aligned} {\rm maximize} \ \ \ \ & z^Tx_0-S_C(z) \\ {\rm subject \ to} \ \ \ \ & ||z||_*\leq1 \end{aligned} maximize    subject to    zTx0SC(z)z1

8.2 Distance between sets

The distance between two sets C C C and D D D, in a norm ∥ ⋅ ∥ ∥ · ∥ , is defined as
d i s t ( C , D ) = inf ⁡ { ∣ ∣ x − y ∣ ∣ ∣ x ∈ C , y ∈ D } {\rm \bold{dist}}(C,D)=\inf\{ ||x-y||\mid x\in C,y\in D \} dist(C,D)=inf{xyxC,yD}

8.2.1 Computing the distance between convex sets

We can find d i s t ( C , D ) \mathbf{dist}(C, D) dist(C,D) by solving the convex optimization problem
m i n i m i z e      ∣ ∣ x − y ∣ ∣ s u b j e c t   t o      f i ( x ) ≤ 0 ,      i = 1 , . . . m g i ( y ) ≤ 0 ,      i = 1 , . . . p \begin{aligned} {\rm minimize} \ \ \ \ & ||x-y|| \\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0, \ \ \ \ i=1,...m \\ & g_i(y)\leq0, \ \ \ \ i=1,...p \end{aligned} minimize    subject to    xyfi(x)0,    i=1,...mgi(y)0,    i=1,...p

8.2.2 Separating convex sets

First express the distance between convex sets in the following equivalent form:
m i n i m i z e      ∣ ∣ w ∣ ∣ s u b j e c t   t o      f i ( x ) ≤ 0 ,      i = 1 , . . . m g i ( y ) ≤ 0 ,      i = 1 , . . . p x − y = w \begin{aligned} {\rm minimize} \ \ \ \ & ||w|| \\ {\rm subject \ to} \ \ \ \ & f_i(x)\leq0, \ \ \ \ i=1,...m \\ & g_i(y)\leq0, \ \ \ \ i=1,...p \\ & x-y=w \end{aligned} minimize    subject to    wfi(x)0,    i=1,...mgi(y)0,    i=1,...pxy=wThe dual function is
g ( λ , z , μ ) = inf ⁡ x , y , w ( ∣ ∣ w ∣ ∣ + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 p μ i g i ( x ) + z T ( x − y − z ) ) = { inf ⁡ x ( ∑ i = 1 m λ i f i ( x ) + z T x ) + inf ⁡ y ( ∑ i = 1 p μ i g i ( x ) − z T y )      ∣ ∣ z ∣ ∣ ∗ ≤ 1 ,    − ∞      o t h e r w i s e \begin{aligned} g(\lambda,z,\mu) &= \inf_{x,y,w}(||w||+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p\mu_ig_i(x)+z^T(x-y-z))\\ &=\left\{ \begin{array}{ll} \inf_x(\sum_{i=1}^m\lambda_if_i(x)+z^Tx) + \inf_y(\sum_{i=1}^p\mu_ig_i(x)-z^Ty) & \ \ \ \ ||z||_*\leq1, \ \ \\ -\infty & \ \ \ \ {\rm otherwise} \end{array} \right. \end{aligned} g(λ,z,μ)=x,y,winf(w+i=1mλifi(x)+i=1pμigi(x)+zT(xyz))={infx(i=1mλifi(x)+zTx)+infy(i=1pμigi(x)zTy)    z1,      otherwise
which results in the dual problem
m a x i m i z e      inf ⁡ x ( ∑ i = 1 m λ i f i ( x ) + z T x ) + inf ⁡ y ( ∑ i = 1 p μ i g i ( x ) − z T y ) s u b j e c t   t o      ∣ ∣ z ∣ ∣ ∗ ≤ 1 λ ⪰ 0 ,    μ ⪰ 0 \begin{aligned} {\rm maximize} \ \ \ \ & \inf_x(\sum_{i=1}^m\lambda_if_i(x)+z^Tx) + \inf_y(\sum_{i=1}^p\mu_ig_i(x)-z^Ty) \\ {\rm subject \ to} \ \ \ \ & ||z||_*\leq1 \\ & \lambda\succeq0, \ \ \mu\succeq0 \end{aligned} maximize    subject to    xinf(i=1mλifi(x)+zTx)+yinf(i=1pμigi(x)zTy)z1λ0,  μ0

8.2.3 Distance and separation via indicator and support functions

The problem of finding the distance between two convex sets can be posed as the convex problem
m i n i m i z e      ∣ ∣ x − y ∣ ∣ s u b j e c t   t o      I C ( x ) ≤ 0 I D ( x ) ≤ 0 \begin{aligned} {\rm minimize} \ \ \ \ & ||x-y|| \\ {\rm subject \ to} \ \ \ \ & I_C(x)\leq0 \\ & I_D(x)\leq0 \\ \end{aligned} minimize    subject to    xyIC(x)0ID(x)0The dual of this problem is
m a x i m i z e      − S C ( − z ) − S D ( z ) s u b j e c t   t o      ∣ ∣ z ∣ ∣ ∗ ≤ 1 \begin{aligned} {\rm maximize} \ \ \ \ & -S_C(-z)-S_D(z) \\ {\rm subject \ to} \ \ \ \ & ||z||_*\leq1 \\ \end{aligned} maximize    subject to    SC(z)SD(z)z1

8.3 Euclidean distance and angle problems

Suppose a 1 , . . . , a n a_1, . . . , a_n a1,...,an is a set of vectors in R n \mathbf{R}^n Rn, which we assume (for now) have known Euclidean lengths
l 1 = ∣ ∣ a 1 ∣ ∣ 2 , . . . , l n = ∣ ∣ a n ∣ ∣ 2 l_1=||a_1||_2,...,l_n=||a_n||_2 l1=a12,...,ln=an2We will refer to the set of vectors as a configuration, or, when they are independent, a basis.

8.3.1 Gram matrix and realizability

The Gram matrix of vectors { a 1 , . . . , a n } \{ a_1,...,a_n \} {a1,...,an} is
G = A T A ,      A = [ a 1    ⋯    a n ] G=A^TA, \ \ \ \ A=[a_1 \ \ \cdots \ \ a_n] G=ATA,    A=[a1    an]which is G i j = a i T a j , G i i = l i 2 G_{ij}=a_i^Ta_j,G_{ii}=l_i^2 Gij=aiTaj,Gii=li2. The distance between a i a_i ai and a j a_j aj is
d i j = ∣ ∣ a i − a j ∣ ∣ 2 = ( G i i + G j j − 2 G i j ) 1 2 d_{ij}=||a_i-a_j||_2=(G_{ii}+G_{jj}-2G_{ij})^{\frac{1}{2}} dij=aiaj2=(Gii+Gjj2Gij)21The correlation coefficient ρ i j ρ_{ij} ρij between (nonzero) a i a_i ai and a j a_j aj is given by
ρ i j = a i T a j ∣ ∣ a i ∣ ∣ 2 ∣ ∣ a j ∣ ∣ 2 = G i j G i i G j j \rho_{ij}=\frac{a_i^Ta_j}{||a_i||_2||a_j||_2}=\frac{G_{ij}}{\sqrt{G_{ii}}\sqrt{G_{jj}}} ρij=ai2aj2aiTaj=Gii Gjj GijThe angel θ i j \theta_{ij} θij is
θ i j = cos ⁡ − 1 ρ i j \theta_{ij}=\cos^{-1}\rho_{ij} θij=cos1ρijA set of lengths, distances, and angles (or correlation coefficients) is realizable if and only if the associated Gram matrix G G G is positive semidefinite, and has diagonal elements l 1 2 , . . . , l n 2 l_1^2, . . . , l_n^2 l12,...,ln2.

8.3.2 Problems involving angles only

Suppose we only care about the angles (or correlation coefficients) between the vectors, and do not specify the lengths or distances between them. Then the gram matrix
G = d i a g ( l ) C d i a g ( l ) G=\mathbf{diag}(l)C\mathbf{diag}(l) G=diag(l)Cdiag(l)where C i j = cos ⁡ θ i j C_{ij}=\cos\theta_{ij} Cij=cosθij.

8.3.3 Euclidean distance problems

In a Euclidean distance problem, we are concerned only with the distances between the vectors, d i j d_{ij} dij , and do not care about the lengths of the vectors, or about the angles between them.
A Euclidean distance matrix is D ∈ S n D\in \mathbf{S}^n DSn with nonnegative elements, zero diagonal and satisfied
G = ( z 1 T + 1 z T − D ) / 2 ⪰ 0   f o r   s o m e   z ⪰ 0 G=(z\bold{1}^T+\bold{1}z^T-D)/2\succeq0 {\rm \ for \ some \ }z\succeq0 G=(z1T+1zTD)/20 for some z0where D i j = d i j 2 D_{ij}=d_{ij}^2 Dij=dij2.
In summary, a matrix D ∈ S n D ∈ \mathbf{S}^n DSn is a Euclidean distance matrix if and only if
D i i = 0 ,    i = 1 , . . . , n      D i j ≥ 0 ,    i , j = 1 , . . . , n ( I − 1 n 1 1 T ) D ( I − 1 n 1 1 T ) ⪯ 0 D_{ii}=0, \ \ i=1,...,n \ \ \ \ D_{ij}\geq0, \ \ i,j=1,...,n \\ (I-\frac{1}{n}\bold{1}\bold{1}^T)D(I-\frac{1}{n}\bold{1}\bold{1}^T) \preceq 0 Dii=0,  i=1,...,n    Dij0,  i,j=1,...,n(In111T)D(In111T)0

8.4 Extremal volume ellipsoids

8.4.1 The Lowner-John ellipsoid

The minimum volume ellipsoid that contains a set C C C is called the Lowner-John ellipsoid of the set C C C, and is denoted E l j \mathcal{E}_{lj} Elj. First denote ellipsoid as
E = { v ∣ ∣ ∣ A v + b ∣ ∣ 2 ≤ 1 } \mathcal{E}=\{ v\mid ||Av+b||_2\leq1 \} E={vAv+b21}Computing the minimum volume ellipsoi containing C C C can be expressed as
m i n i m i z e      log ⁡ det ⁡ A − 1 s u b j e c t   t o      sup ⁡ v ∈ C ∣ ∣ A v + b ∣ ∣ 2 ≤ 1 \begin{aligned} {\rm minimize} \ \ \ \ & \log\det A^{-1} \\ {\rm subject \ to} \ \ \ \ & \sup_{v\in C}||Av+b||_2\leq1 \\ \end{aligned} minimize    subject to    logdetA1vCsupAv+b21

8.4.2 Maximum volume inscribed ellipsoid

First denote ellipsoid as
E = { B u + d ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } \mathcal{E}=\{ Bu+d\mid ||u||_2\leq1 \} E={Bu+du21}We now consider the problem of finding the ellipsoid of maximum volume that lies inside a convex set C C C
m a x i m i z e      log ⁡ det ⁡ B s u b j e c t   t o      sup ⁡ ∣ ∣ u ∣ ∣ 2 ≤ 1 I C ( B u + d ) ≤ 0 \begin{aligned} {\rm maximize} \ \ \ \ & \log\det B \\ {\rm subject \ to} \ \ \ \ & \sup_{||u||_2\leq1}I_C(Bu+d)\leq0 \\ \end{aligned} maximize    subject to    logdetBu21supIC(Bu+d)0

8.4.3 Affine invariance of extremal volume ellipsoids

If E l j \mathcal{E}_{\rm lj} Elj is the Lowner-John ellipsoid of C C C, and T ∈ R n × n T ∈ \mathbf{R}^{n×n} TRn×n is nonsingular, then the Lowner-John ellipsoid of T C TC TC is T E l j T\mathcal{E}_{\rm lj} TElj. A similar result holds for the maximum volume inscribed ellipsoid.

8.5 Centering

8.5.1 Chebyshev center

The depth of a point x ∈ C x ∈ C xC is defined as
d e p t h ( x , C ) = d i s t ( x , R n \ C ) \mathbf{depth}(x,C)=\mathbf{dist}(x,\mathbf{R}^n\backslash C) depth(x,C)=dist(x,Rn\C)A Chebyshev center of the set C C C is defined as any point of maximum depth in C C C:
x c h e b ( C ) = arg ⁡ max ⁡ d e p t h ( x , C ) = arg ⁡ max ⁡ d i s t ( x , R n \ C ) . x_{ \rm cheb}(C) = \arg\max \mathbf{depth}(x, C) = \arg\max \mathbf{dist}(x,\mathbf{R}^n\backslash C). xcheb(C)=argmaxdepth(x,C)=argmaxdist(x,Rn\C).

8.5.2 Maximum volume ellipsoid center

As an extension of this idea, we define the maximum volume ellipsoid center of C C C, denoted x m v e x_{\rm mve} xmve, as the center of the maximum volume ellipsoid that lies in C C C.

8.5.3 Analytic center of a set of inequalities

The analytic center x a c x_{\rm ac} xac of a set of convex inequalities and linear equalities
f i ( x ) ≤ 0 ,    i = 1 , . . . , m ,    F x = g f_i(x)\leq0, \ \ i=1,...,m, \ \ Fx=g fi(x)0,  i=1,...,m,  Fx=gis defined as
m i n i m i z e      − ∑ i = 1 m log ⁡ ( − f i ( x ) ) s u b j e c t   t o      F x = g \begin{aligned} {\rm minimize} \ \ \ \ & -\sum_{i=1}^m\log(-f_i(x)) \\ {\rm subject \ to} \ \ \ \ & Fx=g \\ \end{aligned} minimize    subject to    i=1mlog(fi(x))Fx=g

8.6 Classification

In pattern recognition and classification problems we are given two sets of points in R n \mathbf{R}^n Rn, { x 1 , . . . , x N } \{x_1,...,x_N\} {x1,...,xN} and { y 1 , . . . , y M } \{y_1,...,y_M\} {y1,...,yM}, define a function
f ( x i ) > 0 ,    i = 1 , . . . , N f ( y i ) < 0 ,    i = 1 , . . . , M f(x_i)>0, \ \ i=1,...,N \\ f(y_i)<0, \ \ i=1,...,M f(xi)>0,  i=1,...,Nf(yi)<0,  i=1,...,MIf these inequalities hold, we say that f f f, or its 0-level set { x ∣ f ( x ) = 0 } \{x \mid f(x) = 0\} {xf(x)=0}, separates, classifies, or discriminates the two sets of points.

8.6.1 Linear discrimination

In linear discrimination, we seek an affine function f ( x ) = a T x − b f (x) = a^T x − b f(x)=aTxb that classifies the points
a T x i − b > 0 ,   i = 1 , . . . , N ,          a T y i − b < 0 ,   i = 1 , . . . , M . a^Tx_i −b>0, \ i=1,...,N, \ \ \ \ \ \ \ \ a^Ty_i −b<0, \ i=1,...,M. aTxib>0, i=1,...,N,        aTyib<0, i=1,...,M.Since the strict inequalities are homogeneous in a a a and b b b, they are feasible if and only if the set of nonstrict linear inequalities
a T x i − b ≥ 1 ,   i = 1 , . . . , N ,          a T y i − b ≤ − 1 ,   i = 1 , . . . , M a^Tx_i −b≥1, \ i=1,...,N, \ \ \ \ \ \ \ \ a^Ty_i −b≤−1, \ i=1,...,M aTxib1, i=1,...,N,        aTyib1, i=1,...,M

8.6.2 Nonlinear discrimination

We can just as well seek a nonlinear function f f f, from a given subspace of functions, that is positive on one set and negative on another:
f ( x i ) > 0 ,   i = 1 , . . . , N ,          f ( y i ) < 0 ,   i = 1 , . . . , M . f(x_i) > 0, \ i = 1,...,N, \ \ \ \ \ \ \ \ f(y_i) < 0, \ i = 1,...,M. f(xi)>0, i=1,...,N,        f(yi)<0, i=1,...,M.

8.7 Placement and location

We have N points in R 2 \mathbf{R}^2 R2 or R 3 \mathbf{R}^3 R3, and a list of pairs of points that must be connected by links. The positions of some of the N N N points are fixed; our task is to determine the positions of the remaining points, i.e., to place the remaining points. The problem is to minimize
∑ ( i , j ) ∈ A f i j ( x i , x j ) \sum_{(i,j)\in\mathcal{A}}f_{ij}(x_i,x_j) (i,j)Afij(xi,xj)where A \mathcal{A} A is the set of all links in the graph, and f i j : R k × R k → R f_{ij} :\mathbf{R}^k\times\mathbf{R}^k →\mathbf{R} fij:Rk×RkR is a cost function associated with arc ( i , j ) (i,j) (i,j).

8.7.1 Linear facility location problems

In the simplest version of the problem the cost associated with arc ( i , j ) (i,j) (i,j) is the distance between nodes i i i and j : f i j ( x i , x j ) = ∥ x i − x j ∥ j: f_{ij} (x_i, x_j ) = ∥x_i − x_j ∥ j:fij(xi,xj)=xixj, i.e., we minimize
∑ ( i , j ) ∈ A ∥ x i − x j ∣ ∣ \sum_{(i,j)\in\mathcal{A}}∥x_i − x_j|| (i,j)Axixj

8.7.2 Placement constraints

We can impose a constraint that limits the points x 1 , . . . , x p x_1, . . . , x_p x1,...,xp (say) to lie in a bounding box with perimeter not exceeding P m a x P_{max} Pmax, by adding the constraints
u ⪯ x i ⪯ v ,   i = 1 , . . . , p ,          2 1 T ( v − u ) ≤ P m a x , u\preceq xi \preceq v, \ i=1,...,p, \ \ \ \ \ \ \ \ 2\bold{1}^T(v−u)≤P_{max}, uxiv, i=1,...,p,        21T(vu)Pmax,where u , v u, v u,v are additional variables.

8.7.3 Nonlinear facility location problems

More generally, we can associate a cost with each arc that is a nonlinear increasing function of the length
m i n i m i z e      ∑ i < j w i j h ( ∣ ∣ x i − x j ∣ ∣ ) {\rm minimize} \ \ \ \ \sum_{i<j}w_{ij}h(||x_i-x_j||) \\ minimize    i<jwijh(xixj)where h h h is an increasing (on R + \mathbf{R}^+ R+) and convex function, and w i j ≥ 0 w_{ij} ≥ 0 wij0.

8.7.4 Location problems with path constraints

8.8 Floor planning

A floor planning problem can be considered an extension of a placement problem in two ways:

  • The objects to be placed are rectangles or boxes aligned with the axes (as opposed to points), and must not overlap.
  • Each rectangle or box to be placed can be reconfigured, within some limits. For example we might fix the area of each rectangle, but not the length and height separately.
    In all floor planning problems, we require that the cells lie inside the bounding rectangle
    x i ≥ 0 ,      y i ≥ 0 ,      x i + w i ≤ W ,      y i + h i ≤ H ,   i = 1 , . . . , N . x_i\geq0, \ \ \ \ y_i\geq0,\ \ \ \ x_i +w_i ≤W,\ \ \ \ y_i +h_i ≤H, \ i=1,...,N. xi0,    yi0,    xi+wiW,    yi+hiH, i=1,...,N.We also require that the cells do not overlap, except possibly on their boundaries:
    i n t ( C i ∩ C j ) = ∅    f o r   i ≠ j . \mathbf{int}(C_i∩C_j)=∅ \ \ {\rm for} \ i\neq j. int(CiCj)=  for i=j.

8.8.1 Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells, one of the four possible relative positioning conditions, i.e., left, right, above, or below. One simple method to specify these constraints is to give two relations on { 1 , . . . , N } : L \{1,...,N\}: \mathcal{L} {1,...,N}:L (meaning ‘left of’) and {1,…,N}: \mathcal{B} (meaning ‘below’). We then impose the constraint that C i C_i Ci is to the left of C j C_j Cj if ( i , j ) ∈ L (i,j) ∈ \mathcal{L} (i,j)L, and C i C_i Ci is below C j C_j Cj if ( i , j ) ∈ B (i,j) ∈ \mathcal{B} (i,j)B. This yields the constraints
x i + w i ≤ x j   f o r   ( i , j ) ∈ L ,      y i + h i ≤ y j   f o r   ( i , j ) ∈ B x_i+w_i ≤x_j \ {\rm for} \ (i,j)∈\mathcal{L}, \ \ \ \ y_i+h_i ≤y_j \ {\rm for} \ (i,j)∈\mathcal{B} xi+wixj for (i,j)L,    yi+hiyj for (i,j)BWe can use H , V \mathcal{H},\mathcal{V} H,V to represent inequalities:
x i + w i ≤ x j   f o r   ( i , j ) ∈ H ,      y i + h i ≤ y j   f o r   ( i , j ) ∈ V x_i+w_i ≤x_j \ {\rm for} \ (i,j)∈\mathcal{H},\ \ \ \ y_i+h_i ≤y_j \ {\rm for} \ (i,j)∈\mathcal{V} xi+wixj for (i,j)H,    yi+hiyj for (i,j)V

8.8.2 Floor planning via convex optimization

We impose the bounding box constraints and the relative positioning constraints, which are linear inequalities.

8.8.3 Floor planning via geometric programming

The floor planning problem can also be formulated as a geometric program in the variables x i , y i , w i , h i , W , H x_i, y_i, w_i, h_i, W, H xi,yi,wi,hi,W,H.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
非常经典,我们教材就用的这个!该版本非常清晰,强烈推荐! Preface xi 1 Introduction 1 1.1 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Least-squares and linear programming . . . . . . . . . . . . . . . . . . 4 1.3 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Nonlinear optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I Theory 19 2 Convex sets 21 2.1 Affine and convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Some important examples . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 35 2.4 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Separating and supporting hyperplanes . . . . . . . . . . . . . . . . . . 46 2.6 Dual cones and generalized inequalities . . . . . . . . . . . . . . . . . . 51 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Convex functions 67 3.1 Basic properties and examples . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 79 3.3 The conjugate function . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 Quasiconvex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5 Log-concave and log-convex functions . . . . . . . . . . . . . . . . . . 104 3.6 Convexity with respect to generalized inequalities . . . . . . . . . . . . 108 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 viii Contents 4 Convex optimization problems 127 4.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3 Linear optimization problems . . . . . . . . . . . . . . . . . . . . . . . 146 4.4 Quadratic optimization problems . . . . . . . . . . . . . . . . . . . . . 152 4.5 Geometric programming . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.6 Generalized inequality constraints . . . . . . . . . . . . . . . . . . . . . 167 4.7 Vector optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5 Duality 215 5.1 The Lagrange dual function . . . . . . . . . . . . . . . . . . . . . . . . 215 5.2 The Lagrange dual problem . . . . . . . . . . . . . . . . . . . . . . . . 223 5.3 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.4 Saddle-point interpretation . . . . . . . . . . . . . . . . . . . . . . . . 237 5.5 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 5.6 Perturbation and sensitivity analysis . . . . . . . . . . . . . . . . . . . 249 5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.8 Theorems of alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 258 5.9 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 II Applications 289 6 Approximation and fitting 291 6.1 Norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 6.2 Least-norm problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 6.3 Regularized approximation . . . . . . . . . . . . . . . . . . . . . . . . 305 6.4 Robust approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 6.5 Function fitting and interpolation . . . . . . . . . . . . . . . . . . . . . 324 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 7 Statistical estimation 351 7.1 Parametric distribution estimation . . . . . . . . . . . . . . . . . . . . 351 7.2 Nonparametric distribution estimation . . . . . . . . . . . . . . . . . . 359 7.3 Optimal detector design and hypothesis testing . . . . . . . . . . . . . 364 7.4 Chebyshev and Chernoff bounds . . . . . . . . . . . . . . . . . . . . . 374 7.5 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Contents ix 8 Geometric problems 397 8.1 Projection on a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 8.2 Distance between sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 8.3 Euclidean distance and angle problems . . . . . . . . . . . . . . . . . . 405 8.4 Extremal volume ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . 410 8.5 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 8.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 8.7 Placement and location . . . . . . . . . . . . . . . . . . . . . . . . . . 432 8.8 Floor planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 III Algorithms 455 9 Unconstrained minimization 457 9.1 Unconstrained minimization problems . . . . . . . . . . . . . . . . . . 457 9.2 Descent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 9.3 Gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . . 466 9.4 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 475 9.5 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 9.6 Self-concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 9.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 10 Equality constrained minimization 521 10.1 Equality constrained minimization problems . . . . . . . . . . . . . . . 521 10.2 Newton’s method with equality constraints . . . . . . . . . . . . . . . . 525 10.3 Infeasible start Newton method . . . . . . . . . . . . . . . . . . . . . . 531 10.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 11 Interior-point methods 561 11.1 Inequality constrained minimization problems . . . . . . . . . . . . . . 561 11.2 Logarithmic barrier function and central path . . . . . . . . . . . . . . 562 11.3 The barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 11.4 Feasibility and phase I methods . . . . . . . . . . . . . . . . . . . . . . 579 11.5 Complexity analysis via self-concordance . . . . . . . . . . . . . . . . . 585 11.6 Problems with generalized inequalities . . . . . . . . . . . . . . . . . . 596 11.7 Primal-dual interior-point methods . . . . . . . . . . . . . . . . . . . . 609 11.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 x Contents Appendices 631 A Mathematical background 633 A.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 A.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 A.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 A.5 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 B Problems involving two quadratic functions 653 B.1 Single constraint quadratic optimization . . . . . . . . . . . . . . . . . 653 B.2 The S-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 B.3 The field of values of two symmetric matrices . . . . . . . . . . . . . . 656 B.4 Proofs of the strong duality results . . . . . . . . . . . . . . . . . . . . 657 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 C Numerical linear algebra background 661 C.1 Matrix structure and algorithm complexity . . . . . . . . . . . . . . . . 661 C.2 Solving linear equations with factored matrices . . . . . . . . . . . . . . 664 C.3 LU, Cholesky, and LDLT factorization . . . . . . . . . . . . . . . . . . 668 C.4 Block elimination and Schur complements . . . . . . . . . . . . . . . . 672 C.5 Solving underdetermined linear equations . . . . . . . . . . . . . . . . . 681 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 References 685 Notation 697 Index 701
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值