[笔记] Convex Optimization 2015.11.25

y=sup{xTy:x1}xTyxy
(because xTxyy )
Want inequality of type: xTyf(x)+"f(y)" for “general” f (Fenchel’s Inequality)

  • Definition: For f:RnR, the conjugate f of f is defined by f(y)=supx(xTyf(x))
    with domf= set of y ’s for which sup is < .

    • Example:

      1. f(x)=aTx+b(xRn)
        f(y)=supxxTyaTxb={bif yaif y=a
      2. f(x)=logx(x>0)
        (xy+logx)=y+1x=0x=1y
        f(y)=supx>0xTy+logx={log(y)1if y0if y<0
      3. f(x)=ex(xR)
        (xyex)=yex=0x=logy
        f(y)=supxxTyex={ylogyyif y<0if y0
      4. f(x)=xlogx(x0)
        (xyxlogx)=ylogx1=0x=ey1
        f(y)=supx0xTyxlogx=yey1(y1)ey1=ey1
      5. f(x)=12xTQx with QSn++
        f(y)=supxxTy12xTQx=yTQ1y12yTQ1y=12yTQ1y
        ( infxxTAx+xTbbestx=12A1b )
        So x=Q1y
        xTy12xTQx+12yTQ1y , for all Q0
      6. f(x)=log(ni=1exi)
        f(y)=supxxTylog(ni=1exi)
        (xylog(ni=1exi))=yexini=1exi=0
        yi=exini=1exi,y0,1Ty=1
        assume for simplicity, y0
        put xi=log(yi) , then exi=1Ty=1 and optimality conditions hold
        then f(y)=ni=1yilog(yi)log(1Ty)=ni=1yilog(yi)
      7. f(x)=x
        f(y)=supxxTyx={0if y1if y>1
        xTyxxyx=x(y1)0 if y10
      8. f(x)=12x2
        f(y)=supxxTy12x2=12y2
        xTy12x2xy12x212y2 ( x=y )
        xTy12x2+12y2
    • Proof of general hyperplane seperation:
      Let CRn be a convex set, HR be the affine subspace of smallest dimention containing C , we write Cε={x:Bε(x)HC}
      then Cε"relint(C)"=ε>0Cε . (relint: relative interior)
      ( Crelint(C)¯¯¯¯¯¯¯¯¯¯¯¯¯ , C is a subset of closure of relint(C))
      Let C,D be disjoint convex sets. Then for every ε>0 the sets Aε=Cε¯¯¯¯B1ε(0) , D¯¯¯ are closed disjoint convex sets with Cε¯¯¯¯B1ε(0) bounded, and dist(Aε,D¯¯¯)ε>0 .
      So AεRn , aε0 , bεR s.t. (aε,bε) define a seperating hyperplane for Aε,D¯¯¯ .
      aTεxbεxAε , aTεxbεxD¯¯¯
      WLOG aε=1
      The sequence (a⃗ 1n)n=1 is a sequence of unit vectors and so has a convergent subsequence, say WLOG convergent to a0Rn .
      can assume sequence b1n is bonded (or else one of the sets C,D is empty)
      and so also convergent to some value b0R .
      Want to show (a0,b0) is SH for C,D , i.e., that
      aT0xb0xC,aT0xb0xD
      (Assume C is not a point, proof like above; then assume D is not a point, switch C,D.
      If C,D are points, obious true.)

    • Log-convexity and log-concavity
      - Definition: f:RnR>0 is log-convex (log-concave) if log(f) is convex (concave).
      - Convexity:
      log(f(θx+(1θ)y))θlog(f(x))+(1θ)log(f(y))=log(f(x)θf(y)1θ)
      f(θx+(1θ)y)f(x)θf(y)1θ
      - Remark 2: log-convex convex, f(x)=elogf(x) , (composition function, QED)
      concave log-concave

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值