HMANet阅读笔记

1.比较了pixel-wise attention和region-wise attention。这里提到的attention核心操作都是像DANet中空间注意力机制一样,将特征图分别变形为两个矩阵相乘,得到attention map。region-wise attention比前者不同的是,将特征图划分成若干区域,并对每一个区域作全局池化得到新的特征图,再从新的特征图上得到attention map。这样做的好处是,一来可以降低参数量,特征图尺度变小,则参与卷积的卷积核的参数量自然下降,此外也减少了内存的使用和节约了计算的开支(矩阵运算很消耗内存和依靠计算力)。二来可以弥补前者的一些不足。在pixel-wise attention中,仅仅凭借一个像素点的信息,你很难说明它属于哪一类,况且遥感图像场景复杂,空间中有很多像素相似但并不属于同一类别的像素点。而在region-wise attention 中则是一个区域,有着更丰富的周围像素信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值