语义分割之网络结构

目录

2018

deeplabv3+

2019

HRNet

2020

HMANet

Hierarchical multi-scale attention

Scaling Wide Residual Networks for Panoptic Segmentation


总结近年来常用的经典语义分割网络结构,主要以图文形式展现,欢迎评论,或者在评论中留下详细讲解的链接,博文持续更新....

2018

deeplabv3+

博客资源:https://www.jianshu.com/p/755b001bfe38

code。采用空洞卷积构造ASPP模块,一般ASPP模型在1/16的特征图上进行,low-level Features在1/4的特征图。

2019

HRNet

博客资源:https://blog.csdn.net/gefeng1209/article/details/93142916

对于语义分割,将各个尺度的特征图合并。如下图所示红框所示。利用所有分辨率的特征图,对低分辨率特征图上采样后与高分辨率特征图拼接,经过1*1卷积,softmax层生成分割预测图

2020

HMANet

Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images

在ISPRS Vaihingen和Potsdam数据集上,达到了SOTA。采用混合注意力机制的策略

Hierarchical multi-scale attention

cityspace数据集上的排名如下:

网络结构如下图所示,Attn为Multi-scale attention,预测相邻两尺度之间对应像素的权重关系。

结构说明如下图所示。(偷个懒,不做翻译了^_^)

Scaling Wide Residual Networks for Panoptic Segmentation

WideRNet上搜索合适的网络参数,权衡速度和精度。网络用SWideRNet(w1, w2, e)表示,结构如下图所示。

SE和SAC

实验

 

 

 

 

 

### DeepLabV3 语义分割网络结构图与架构可视化 DeepLabV3 是一种基于空洞卷积(Atrous Convolution)的语义分割方法,其核心在于通过多尺度上下文捕获能力解决不同尺寸目标的分割问题[^3]。以下是有关 DeepLabV3 的主要组成部分及其架构可视化的详细介绍。 #### 主要组件 1. **基础骨干网络 (Backbone Network)** DeepLabV3 使用预训练的分类网络作为骨干网络,例如 ResNet 或 MobileNet。这些网络经过修改以适应语义分割任务的需求,通常会移除全连接层并替换为空洞卷积操作。 2. **空洞空间金字塔池化模块 (ASPP - Atrous Spatial Pyramid Pooling)** ASPP 模块是 DeepLabV3 的关键部分之一,它通过在多个不同的采样率下应用空洞卷积来捕获多尺度信息。具体来说,ASPP 包含一组具有不同空洞率的平行分支以及一个全局平均池化分支,最终将它们的结果拼接在一起。 3. **解码器 (Decoder)** 虽然原始的 DeepLabV3 并未强调复杂的解码器设计,但它可以通过简单的双线性插值恢复高分辨率特征映射。相比之下,后续改进版如 DeepLabV3+ 则引入了解码器模块,用于融合低层次特征和高层次语义信息,从而改善边界精度[^2]。 #### 架构可视化描述 尽管无法直接展示图片形式的架构图,以下是对 DeepLabV3 结构的一种文字描述: - 输入图像首先被送入骨干网络提取深层特征; - 骨干网络的最后一层输出传递至 ASPP 模块,在此阶段完成多尺度上下文聚合; - 经过 ASPP 处理后的特征图通过双线性插值放大到输入图像大小; - 输出像素级别的类别预测结果。 如果需要更直观的理解,可以参考官方论文中的图表或者开源项目文档里的说明材料。 ```python import torch from torchvision import models # 加载预定义好的deeplabv3_resnet101模型 model = models.segmentation.deeplabv3_resnet101(pretrained=True) # 查看模型结构概览 print(model) ``` 上述代码片段展示了如何利用 PyTorch 和 TorchVision 库加载已有的 DeeplabV3 实现,并打印出整个网络的具体组成情况以便于分析学习。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值