【NeRF系列文章四】后处理过程

       

目录

1、体渲染

2、层次采样


论文地址:https://dl.acm.org/doi/pdf/10.1145/3503250

代码地址:https://github.com/yenchenlin/nerf-pytorch

         得到模型的输出后,需要利用这些信息进行体渲染,得到一张新的图片,这个过程为了便于理解我们称为后处理过程,那么后处理过程包括:层次采样+体渲染。

1、体渲染

        模型输出4D向量后,通过体渲染得到图片,下面进行体渲染理解。

        论文将体渲染这一过程抽象为如下公式:

        该公式最后得到是物体的颜色,从前面分析我们可以明确感知到,物体颜色就是同一条射线上所有粒子的求和。那么反应到数学公式中,对于连续场景来说,数学形式上来说应该是积分形式;其次,看到论文中的这个公式我们需要明白已知量是什么?T\left ( t \right )的形式为什么是这样?

        让我们逐个来解答:

        公式中密度概率和颜色都是模型输出的,是已知的量

        那么现在T\left ( t \right )又是如何的得到的呢?

        我们先来看论文中关于T\left ( t \right )\sigma \left ( t \right )的定义:

        T\left ( t \right ):在该段时间内没有撞击到粒子的概率;

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ranran是前鼻音

你的鼓励是我最大的创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值