目录
论文地址:https://dl.acm.org/doi/pdf/10.1145/3503250
代码地址:https://github.com/yenchenlin/nerf-pytorch
得到模型的输出后,需要利用这些信息进行体渲染,得到一张新的图片,这个过程为了便于理解我们称为后处理过程,那么后处理过程包括:层次采样+体渲染。
1、体渲染
模型输出4D向量后,通过体渲染得到图片,下面进行体渲染理解。
论文将体渲染这一过程抽象为如下公式:
该公式最后得到是物体的颜色,从前面分析我们可以明确感知到,物体颜色就是同一条射线上所有粒子的求和。那么反应到数学公式中,对于连续场景来说,数学形式上来说应该是积分形式;其次,看到论文中的这个公式我们需要明白已知量是什么?的形式为什么是这样?
让我们逐个来解答:
公式中密度概率和颜色都是模型输出的,是已知的量。
那么现在又是如何的得到的呢?
我们先来看论文中关于和
的定义:
:在该段时间内没有撞击到粒子的概率;