常数项级数

本文详细介绍了级数的概念,包括一般项、部分和和收敛/发散的定义。讨论了收敛与部分和的关系,以及绝对收敛、条件收敛的判断方法,如比较判别法、积分判别法、泰勒展开等,并通过实例展示了收敛性判定的策略。
摘要由CSDN通过智能技术生成

定义

级数的形式如下:

∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + . . . + u n + . . . \sum_{n=1}^{\infin}u_n = u_1+u_2+u_3+...+u_n+... n=1un=u1+u2+u3+...+un+...

这个数列的项数是无穷多个,如果取其前n项 S n = u 1 + u 2 + . . . + u n S_n = u_1+u_2+...+u_n Sn=u1+u2+...+un,这个 S n S_n Sn就叫做部分和

其中 u n u_n un叫做一般项,可以是常数,也可以是变量。

收敛/发散的定义

lim ⁡ n → ∞ S n = n \lim_{n\to\infin}S_n=n nlimSn=n

则收敛,收敛和为S,即

∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + . . . + u n + . . . = S \sum_{n=1}^{\infin}u_n = u_1+u_2+u_3+...+u_n+...=S n=1un=u1+u2+u3+...+un+...=S

否则称该级数发散。

余项定义

级数余项等于级数减去前n项和

r n = ∑ n = 1 ∞ u n − S n = u n + 1 + u n + 2 + u n + 3 + . . . r_n=\sum_{n=1}^{\infin}u_n-S_n = u_{n+1}+u_{n+2}+u_{n+3}+... rn=n=1unSn=un+1+un+2+un+3+...

级数与部分和的关系

研究级数的问题可以与部分和的问题相关联,因为 u n = S n − S n − 1 u_n=S_n-S_{n-1} un=SnSn1,另一方面上面的级数收敛,也意味着 S n S_n Sn极限存在

绝对收敛与条件收敛

在这里插入图片描述
对于(1)是因为 0 ≤ u n + ∣ u n ∣ ≤ 2 ∣ u n ∣ 0\le u_n+|u_n|\le 2|u_n| 0un+un2∣un,使用比较判别法可得

  • ∣ u n ∣ |u_n| un u n u_n un必收,是绝对收敛
  • u n u_n un ∣ u n ∣ |u_n| un若散,是条件收敛

对于注, u n ± ∣ u n ∣ u_n±|u_n| un±un属于“收敛+发散=发散”,其敛散性显然是发散的

敛散性判断的若干方法

在这里插入图片描述

口诀

k k k倍,仍收敛
敛于 a a a+敛于 b b b=敛于 a + b a+b a+b(敛+敛=敛)
敛+散=散
散+散=?(不一定,都有可能)
去掉/加上有限项不改变敛散性
收敛级数加括号后的级数仍收敛且其和不变
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

几个典型敛散性

在这里插入图片描述
注:
(1)中求和起点应该是 n = 0 n=0 n=0,这是对等比数列求和公式取极限得来的 S n = a 1 ( 1 − q n ) 1 − q S_n=\frac{a_1(1-q^n)}{1-q} Sn=1qa1(1qn)
(2)中使用积分判别法,下式同敛散 ∑ n = 1 ∞ 1 n p = ∫ 1 + ∞ 1 x p d x \sum_{n=1}^{\infty}\frac{1}{n^p}=\int_1^{+\infty}\frac{1}{x^p}dx n=1np1=1+xp1dx

+ ∞ 负数次方 → 0 +\infty^{负数次方}\to0 +负数次方0

如果正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un 收敛,那么正项级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^\infty u_n^2 n=1un2 也收敛。

级数敛散性及其判定的一般思路

正项级数各项非负

方法一:看必要条件,即 lim ⁡ n → ∞ u n \lim_{n\to \infty} u_n limnun是否趋于0,不趋于0一定发散,趋于0不一定收敛
方法2:看 lim ⁡ n → ∞ ( u 1 + u 2 + . . . + u n ) \lim_{n\to \infty} (u_1+u_2+...+u_n) limn(u1+u2+...+un)是否存在,存在则收敛
方法3:分类讨论(正项级数、交错级数)

对于正项级数:

  • 收敛的充要条件是 S n S_n Sn有界,这意味着 S n S_n Sn单增且有上界极限必存在
  • 比较判别法:大收小必收,小散大必散(其实还是放缩)(适用于抽象形式)
  • 比值判别法(适合带阶乘的)( ρ = 1 \rho=1 ρ=1要用其他方法)
  • 根值判别法(适合含幂的)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    对于交错级数:
  • 莱布尼兹准则(通项绝对值单调递减且趋于0)(趋于0一般很好判断,比较不趋于0直接就判断发散了)
  • 绝对收敛与条件收敛

在这里插入图片描述

例题思路

套定义

抓住“收敛”关键字眼,将题目条件转换成一些式子

lim ⁡ n → ∞ n a n = 0 \lim_{n\to \infty}na_n=0 limnnan=0且级数 ∑ n = 1 ∞ n ( a n − a n − 1 ) \sum_{n=1}^\infty n(a_n-a_{n-1}) n=1n(anan1)收敛,则级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an的敛散性是收敛

∑ n = 1 ∞ n ( a n − a n − 1 ) \sum_{n=1}^\infty n(a_n-a_{n-1}) n=1n(anan1)收敛意味着部分和数列极限存在,然后写一下这个发现能相消掉一部分,于是其部分和数列转换为 lim ⁡ n → ∞ [ n a n − ( a 0 + a 1 + a 2 + . . . + a n − 1 ) ] \lim_{n\to \infty}[na_n-(a_0+a_1+a_2+...+a_{n-1})] limn[nan(a0+a1+a2+...+an1)],然后题目说了 lim ⁡ n → ∞ n a n = 0 \lim_{n\to \infty}na_n=0 limnnan=0,则后者 lim ⁡ n → ∞ a 0 + a 1 + a 2 + . . . + a n − 1 = S n − 1 = 0 \lim_{n\to \infty}a_0+a_1+a_2+...+a_{n-1}=S_{n-1}=0 limna0+a1+a2+...+an1=Sn1=0这个部分和数列有极限,所以它收敛,得证。

通项不趋于0

∑ n = 1 ∞ n n n n ( 1 + n ) n \sum_{n=1}^{\infty}\frac{n^n}{\sqrt[n]{n}(1+n)^n} n=1nn (1+n)nnn

这个问题就转换为了对通项求极限,发现是个非零常数 1 e \frac 1e e1,故发散

观察其部分和

例如对于 ∑ n = 1 ∞ u n = 1 + 2 + 3 + . . . + n + . . . \sum_{n=1}^{\infin}u_n =1+2+3+...+n+... n=1un=1+2+3+...+n+... S n = n ( n + 1 ) 2 S_n=\frac{n(n+1)}{2} Sn=2n(n+1) n → ∞ n\to\infin n S n S_n Sn也趋于无穷,所以发散

反证法

∑ n = 1 ∞ u n = 1 n \sum_{n=1}^{\infin}u_n =\frac{1}{n} n=1un=n1

S n = S S_n=S Sn=S则亦有 S 2 n = S S_{2n}=S S2n=S,这时候必然有 lim ⁡ n → ∞ S 2 n − S n = 0 \lim_{n\to\infin}S_{2n}-S_n=0 nlimS2nSn=0

lim ⁡ n → ∞ S 2 n − S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = 1 2 \lim_{n\to\infin}S_{2n}-S_n=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}=\frac{1}{2} nlimS2nSn=n+11+n+21+...+2n1>2n1+2n1+...+2n1=21

它不等于0。所以反正完毕,这个不收敛。


收×收未必收

反例: lim ⁡ n = 1 ∞ ( − 1 ) n n \lim_{n=1}^\infty\frac{(-1)^n}{\sqrt n} n=1limn (1)n

若都是正项级数则收×收=收(属于比较判别法)

放缩+裂项相消

∑ n = 1 ∞ 1 n 2 \sum_{n=1}^\infty\frac{1}{n^2} n=1n21

然后 1 n 2 < 1 n ( n − 1 ) = 1 n − 1 − 1 n \frac1{n^2}<\frac1{n(n-1)}=\frac{1}{n-1}-\frac 1n n21<n(n1)1=n11n1裂项相消即可

比值审敛

∑ n = 1 ∞ ( n + 1 ) ! n ! \sum_{n=1}^\infty\frac{(n+1)!}{n!} n=1n!(n+1)!

采用 lim ⁡ n → ∞ u n + 1 u n \lim_{n\to\infty}\frac {u_{n+1}}{u_n} limnunun+1的形式,可化简得下式 lim ⁡ n → ∞ n + 2 ( n + 1 ) n ⋅ n n n + 1 ⋅ n n + 1 = lim ⁡ n → ∞ n n ( n + 1 ) n = lim ⁡ n → ∞ 1 ( 1 + 1 n ) n = 1 e < 1 \lim_{n\to\infty}\frac {n+2}{(n+1)^n}·\frac {n^n}{n+1}·\frac {n}{n+1}=\lim_{n\to\infty}\frac {n^n}{(n+1)^n}=\lim_{n\to\infty}\frac {1}{(1+\frac 1n)^n}=\frac 1e<1 nlim(n+1)nn+2n+1nnn+1n=nlim(n+1)nnn=nlim(1+n1)n1=e1<1所以收敛

化成P级数

∑ n = 2 ∞ ( − 1 ) n n n − 1 \sum_{n=2}^{\infty}\frac{(-1)^n\sqrt{n}}{n-1} n=2n1(1)nn

先看通项绝对值

∣ u n ∣ = n n − 1 = n n ⋅ ( 1 − 1 n ) = 1 n ⋅ 1 1 − 1 n = 1 n |u_n|=\frac{\sqrt{n}}{n-1}=\frac{\sqrt{n}}{n·(1-\frac 1n)}=\frac{1}{\sqrt n}·\frac{1}{1-\frac 1n}=\frac{1}{\sqrt n } un=n1n =n(1n1)n =n 11n11=n 1

最后一步是由于 lim ⁡ n → ∞ 1 − 1 n = 1 \lim_{n\to \infty}1-\frac 1n=1 limn1n1=1
然后这就是P级数了。显然发散,说明不是绝对收敛。考虑条件收敛,使用的方法是莱布尼兹准则,于是问题转换成了求下式成立:

lim ⁡ n → ∞ n n − 1 = 0 \lim_{n\to\infty}\frac{\sqrt n}{n-1}=0 nlimn1n =0以及把它设为函数后求导小于0

通项较为复杂的级数判敛

通常如果有预感是发散的话,可以对通项进行变换(包括但不限于通分、泰勒展开等)成几部分加和的形式,然后因为“散+敛=散”判定原函数发散

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值