定义
级数的形式如下:
∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + . . . + u n + . . . \sum_{n=1}^{\infin}u_n = u_1+u_2+u_3+...+u_n+... n=1∑∞un=u1+u2+u3+...+un+...
这个数列的项数是无穷多个,如果取其前n项 S n = u 1 + u 2 + . . . + u n S_n = u_1+u_2+...+u_n Sn=u1+u2+...+un,这个 S n S_n Sn就叫做部分和
其中 u n u_n un叫做一般项,可以是常数,也可以是变量。
收敛/发散的定义
若
lim n → ∞ S n = n \lim_{n\to\infin}S_n=n n→∞limSn=n
则收敛,收敛和为S,即
∑ n = 1 ∞ u n = u 1 + u 2 + u 3 + . . . + u n + . . . = S \sum_{n=1}^{\infin}u_n = u_1+u_2+u_3+...+u_n+...=S n=1∑∞un=u1+u2+u3+...+un+...=S
否则称该级数发散。
余项定义
级数余项等于级数减去前n项和
r n = ∑ n = 1 ∞ u n − S n = u n + 1 + u n + 2 + u n + 3 + . . . r_n=\sum_{n=1}^{\infin}u_n-S_n = u_{n+1}+u_{n+2}+u_{n+3}+... rn=n=1∑∞un−Sn=un+1+un+2+un+3+...
级数与部分和的关系
研究级数的问题可以与部分和的问题相关联,因为 u n = S n − S n − 1 u_n=S_n-S_{n-1} un=Sn−Sn−1,另一方面上面的级数收敛,也意味着 S n S_n Sn极限存在
绝对收敛与条件收敛
对于(1)是因为
0
≤
u
n
+
∣
u
n
∣
≤
2
∣
u
n
∣
0\le u_n+|u_n|\le 2|u_n|
0≤un+∣un∣≤2∣un∣,使用比较判别法可得
- ∣ u n ∣ |u_n| ∣un∣收 u n u_n un必收,是绝对收敛
- u n u_n un收 ∣ u n ∣ |u_n| ∣un∣若散,是条件收敛
对于注, u n ± ∣ u n ∣ u_n±|u_n| un±∣un∣属于“收敛+发散=发散”,其敛散性显然是发散的
敛散性判断的若干方法
口诀
扩
k
k
k倍,仍收敛
敛于
a
a
a+敛于
b
b
b=敛于
a
+
b
a+b
a+b(敛+敛=敛)
敛+散=散
散+散=?(不一定,都有可能)
去掉/加上有限项不改变敛散性
收敛级数加括号后的级数仍收敛且其和不变
几个典型敛散性
注:
(1)中求和起点应该是
n
=
0
n=0
n=0,这是对等比数列求和公式取极限得来的
S
n
=
a
1
(
1
−
q
n
)
1
−
q
S_n=\frac{a_1(1-q^n)}{1-q}
Sn=1−qa1(1−qn)
(2)中使用积分判别法,下式同敛散
∑
n
=
1
∞
1
n
p
=
∫
1
+
∞
1
x
p
d
x
\sum_{n=1}^{\infty}\frac{1}{n^p}=\int_1^{+\infty}\frac{1}{x^p}dx
n=1∑∞np1=∫1+∞xp1dx
+ ∞ 负数次方 → 0 +\infty^{负数次方}\to0 +∞负数次方→0
如果正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n ∑n=1∞un 收敛,那么正项级数 ∑ n = 1 ∞ u n 2 \sum_{n=1}^\infty u_n^2 ∑n=1∞un2 也收敛。
级数敛散性及其判定的一般思路
正项级数各项非负
方法一:看必要条件,即
lim
n
→
∞
u
n
\lim_{n\to \infty} u_n
limn→∞un是否趋于0,不趋于0一定发散,趋于0不一定收敛
方法2:看
lim
n
→
∞
(
u
1
+
u
2
+
.
.
.
+
u
n
)
\lim_{n\to \infty} (u_1+u_2+...+u_n)
limn→∞(u1+u2+...+un)是否存在,存在则收敛
方法3:分类讨论(正项级数、交错级数)
对于正项级数:
- 收敛的充要条件是 S n S_n Sn有界,这意味着 S n S_n Sn单增且有上界极限必存在
- 比较判别法:大收小必收,小散大必散(其实还是放缩)(适用于抽象形式)
- 比值判别法(适合带阶乘的)( ρ = 1 \rho=1 ρ=1要用其他方法)
- 根值判别法(适合含幂的)
对于交错级数: - 莱布尼兹准则(通项绝对值单调递减且趋于0)(趋于0一般很好判断,比较不趋于0直接就判断发散了)
- 绝对收敛与条件收敛
例题思路
套定义
抓住“收敛”关键字眼,将题目条件转换成一些式子
若 lim n → ∞ n a n = 0 \lim_{n\to \infty}na_n=0 limn→∞nan=0且级数 ∑ n = 1 ∞ n ( a n − a n − 1 ) \sum_{n=1}^\infty n(a_n-a_{n-1}) ∑n=1∞n(an−an−1)收敛,则级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n ∑n=1∞an的敛散性是收敛
∑ n = 1 ∞ n ( a n − a n − 1 ) \sum_{n=1}^\infty n(a_n-a_{n-1}) ∑n=1∞n(an−an−1)收敛意味着部分和数列极限存在,然后写一下这个发现能相消掉一部分,于是其部分和数列转换为 lim n → ∞ [ n a n − ( a 0 + a 1 + a 2 + . . . + a n − 1 ) ] \lim_{n\to \infty}[na_n-(a_0+a_1+a_2+...+a_{n-1})] limn→∞[nan−(a0+a1+a2+...+an−1)],然后题目说了 lim n → ∞ n a n = 0 \lim_{n\to \infty}na_n=0 limn→∞nan=0,则后者 lim n → ∞ a 0 + a 1 + a 2 + . . . + a n − 1 = S n − 1 = 0 \lim_{n\to \infty}a_0+a_1+a_2+...+a_{n-1}=S_{n-1}=0 limn→∞a0+a1+a2+...+an−1=Sn−1=0这个部分和数列有极限,所以它收敛,得证。
通项不趋于0
∑ n = 1 ∞ n n n n ( 1 + n ) n \sum_{n=1}^{\infty}\frac{n^n}{\sqrt[n]{n}(1+n)^n} n=1∑∞nn(1+n)nnn
这个问题就转换为了对通项求极限,发现是个非零常数 1 e \frac 1e e1,故发散
观察其部分和
例如对于 ∑ n = 1 ∞ u n = 1 + 2 + 3 + . . . + n + . . . \sum_{n=1}^{\infin}u_n =1+2+3+...+n+... n=1∑∞un=1+2+3+...+n+...其 S n = n ( n + 1 ) 2 S_n=\frac{n(n+1)}{2} Sn=2n(n+1)在 n → ∞ n\to\infin n→∞时 S n S_n Sn也趋于无穷,所以发散
反证法
∑ n = 1 ∞ u n = 1 n \sum_{n=1}^{\infin}u_n =\frac{1}{n} n=1∑∞un=n1
若 S n = S S_n=S Sn=S则亦有 S 2 n = S S_{2n}=S S2n=S,这时候必然有 lim n → ∞ S 2 n − S n = 0 \lim_{n\to\infin}S_{2n}-S_n=0 n→∞limS2n−Sn=0
而
lim n → ∞ S 2 n − S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = 1 2 \lim_{n\to\infin}S_{2n}-S_n=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}=\frac{1}{2} n→∞limS2n−Sn=n+11+n+21+...+2n1>2n1+2n1+...+2n1=21
它不等于0。所以反正完毕,这个不收敛。
收×收未必收
反例: lim n = 1 ∞ ( − 1 ) n n \lim_{n=1}^\infty\frac{(-1)^n}{\sqrt n} n=1lim∞n(−1)n
若都是正项级数则收×收=收(属于比较判别法)
放缩+裂项相消
∑ n = 1 ∞ 1 n 2 \sum_{n=1}^\infty\frac{1}{n^2} n=1∑∞n21
然后 1 n 2 < 1 n ( n − 1 ) = 1 n − 1 − 1 n \frac1{n^2}<\frac1{n(n-1)}=\frac{1}{n-1}-\frac 1n n21<n(n−1)1=n−11−n1裂项相消即可
比值审敛
∑ n = 1 ∞ ( n + 1 ) ! n ! \sum_{n=1}^\infty\frac{(n+1)!}{n!} n=1∑∞n!(n+1)!
采用 lim n → ∞ u n + 1 u n \lim_{n\to\infty}\frac {u_{n+1}}{u_n} limn→∞unun+1的形式,可化简得下式 lim n → ∞ n + 2 ( n + 1 ) n ⋅ n n n + 1 ⋅ n n + 1 = lim n → ∞ n n ( n + 1 ) n = lim n → ∞ 1 ( 1 + 1 n ) n = 1 e < 1 \lim_{n\to\infty}\frac {n+2}{(n+1)^n}·\frac {n^n}{n+1}·\frac {n}{n+1}=\lim_{n\to\infty}\frac {n^n}{(n+1)^n}=\lim_{n\to\infty}\frac {1}{(1+\frac 1n)^n}=\frac 1e<1 n→∞lim(n+1)nn+2⋅n+1nn⋅n+1n=n→∞lim(n+1)nnn=n→∞lim(1+n1)n1=e1<1所以收敛
化成P级数
∑ n = 2 ∞ ( − 1 ) n n n − 1 \sum_{n=2}^{\infty}\frac{(-1)^n\sqrt{n}}{n-1} n=2∑∞n−1(−1)nn
先看通项绝对值
∣ u n ∣ = n n − 1 = n n ⋅ ( 1 − 1 n ) = 1 n ⋅ 1 1 − 1 n = 1 n |u_n|=\frac{\sqrt{n}}{n-1}=\frac{\sqrt{n}}{n·(1-\frac 1n)}=\frac{1}{\sqrt n}·\frac{1}{1-\frac 1n}=\frac{1}{\sqrt n } ∣un∣=n−1n=n⋅(1−n1)n=n1⋅1−n11=n1
最后一步是由于
lim
n
→
∞
1
−
1
n
=
1
\lim_{n\to \infty}1-\frac 1n=1
limn→∞1−n1=1
然后这就是P级数了。显然发散,说明不是绝对收敛。考虑条件收敛,使用的方法是莱布尼兹准则,于是问题转换成了求下式成立:
lim n → ∞ n n − 1 = 0 \lim_{n\to\infty}\frac{\sqrt n}{n-1}=0 n→∞limn−1n=0以及把它设为函数后求导小于0
通项较为复杂的级数判敛
通常如果有预感是发散的话,可以对通项进行变换(包括但不限于通分、泰勒展开等)成几部分加和的形式,然后因为“散+敛=散”判定原函数发散