函数项级数与幂级数

基本概念

定义

幂级数是包含在函数项级数里的,函数项级数又带 n n n又带 x x x,当函数项级数的 x x x是定值(常数)时,就变成了常数项级数
在这里插入图片描述

和函数

S ( x ) = ∑ n = 1 ∞ u n ( x ) S(x)=\sum_{n=1}^\infty u_n(x) S(x)=n=1un(x)且和函数的定义域对应原级数的收敛域

幂级数

形如 ∑ n = 1 ∞ a n ( x − x 0 ) n \sum_{n=1}^\infty a_n(x-x_0)^n n=1an(xx0)n称为在 x 0 x_0 x0处的幂级数

在这里插入图片描述
在这里插入图片描述

收敛域的求法

收敛区间是开区间,收敛域可能有闭区域,即收敛区间+端点性质=收敛域

幂级数的性质

  1. 幂级数的和函数在其收敛域 I I I上连续
  2. 和函数逐项积分后所得到的幂级数和原幂级数有相同的收敛半径
  3. 逐项求导后所得到的幂级数和原幂级数有相同的收敛半径

幂级数的运算

在这里插入图片描述

泰勒级数

求级数的和函数要先求收敛域

泰勒级数是一种幂级数只展到n阶叫泰勒展开式,能无限展下去叫泰勒级数
在这里插入图片描述

在这里插入图片描述
1 1 − x = ∑ x = 0 ∞ x n = 1 + x + x 2 + . . . + x n + . . .  ,  x ∈ ( − 1 , 1 ) 1 1 + x = ∑ x = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 + . . . + ( − 1 ) n x n + . . .  ,  x ∈ ( − 1 , 1 ) \frac 1{1-x}=\sum_{x =0}^{\infty}x^n=1+x+x^2+...+x^n+...\text{ , }x \in (-1,1)\\ \frac 1{1+x}=\sum_{x =0}^{\infty}(-1)^nx^n=1-x+x^2+...+(-1)^nx^n+...\text{ , }x \in (-1,1) 1x1=x=0xn=1+x+x2+...+xn+... , x(1,1)1+x1=x=0(1)nxn=1x+x2+...+(1)nxn+... , x(1,1)

记忆技巧:

1 1 + x = 1 1 − ( − x ) = ∑ x = 0 ∞ ( − x ) n \frac 1{1+x}=\frac 1{1-(-x)}=\sum_{x =0}^{\infty}(-x)^n 1+x1=1(x)1=x=0(x)n


e x e^x ex sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx的x取值范围均是 x ∈ ( − ∞ , ∞ ) x \in(-\infty,\infty) x(,)
ln ⁡ ( 1 + x ) \ln (1+x) ln(1+x)则是 x ∈ ( − 1 , 1 ] x \in (-1,1] x(1,1]
( 1 + x ) a (1+x)^a (1+x)a 1 1 − x \frac 1{1-x} 1x1 1 1 + x \frac 1{1+x} 1+x1则是 x ∈ ( − 1 , 1 ) x \in (-1,1) x(1,1)


sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx求导会出现负项,所以是正负交替的,另外 sin ⁡ x ′ = cos ⁡ x \sin x'=\cos x sinx=cosx所以 sin ⁡ x \sin x sinx级数求导就是 cos ⁡ x \cos x cosx的级数,即下式

∑ x = 0 ∞ ( ( − 1 ) n ( 2 n + 1 ) ! ⋅ x 2 n + 1 ) ′ = ∑ x = 0 ∞ ( ( − 1 ) n 2 n ! ⋅ x 2 n ) \sum_{x =0}^{\infty}(\frac{(-1)^n}{(2n+1)!}·x^{2n+1})'=\sum_{x =0}^{\infty}(\frac{(-1)^n}{2n!}·x^{2n}) x=0((2n+1)!(1)nx2n+1)=x=0(2n!(1)nx2n)


∑ x = 0 ∞ x 2 n ( 2 n ) ! = ∑ x = 0 ∞ x n n ! + ∑ x = 0 ∞ − x n n ! \sum_{x =0}^{\infty}\frac{x^{2n}}{(2n)!}=\sum_{x =0}^{\infty}\frac{x^n}{n!}+\sum_{x =0}^{\infty}\frac{-x^n}{n!} x=0(2n)!x2n=x=0n!xn+x=0n!xn

因为 n n n为奇数会抵消

幂级数收敛半径的求法

在这里插入图片描述
在这里插入图片描述

x^n的重要推论

等比级数

∑ n = 0 ∞ x n = 1 1 − x , ∣ x ∣ < 1 \sum_{n=0}^\infty x_n = \frac 1 {1-x},|x|<1 n=0xn=1x1,x<1

上面提到了两个重要的性质如下

  • 和函数逐项积分后所得到的幂级数和原幂级数有相同的收敛半径
  • 逐项求导后所得到的幂级数和原幂级数有相同的收敛半径

如果对这个式子求导,并且两侧同乘一定数量的 x x x使左侧为 x n x^n xn会得到下式

∑ n = 0 ∞ n x n = ( 1 1 − x ) ′ x , ∣ x ∣ < 1 \sum_{n=0}^\infty nx^n = (\frac 1 {1-x})'x,|x|<1 n=0nxn=(1x1)x,x<1
如法炮制则如下
∑ n = 0 ∞ n ( n − 1 ) x n = ( 1 1 − x ) ′ ′ x 2 , ∣ x ∣ < 1 \sum_{n=0}^\infty n(n-1)x^n = (\frac 1 {1-x})''x^2,|x|<1 n=0n(n1)xn=(1x1)′′x2,x<1


那么对于一个级数 ∑ n = 0 ∞ ( a n 2 + b n + c ) x n \sum_{n=0}^\infty (an^2+bn+c)x^n n=0(an2+bn+c)xn就可以用上面的仨表示

a n 2 + b n + c = { c ⋅ 1 ( a + b ) ⋅ n a ⋅ n ( n − 1 ) an^2+bn+c=\left\{ \begin{aligned} c·1 \\ (a+b)·n\\ a· n(n-1) \end{aligned} \right. an2+bn+c= c1(a+b)nan(n1)
所以可以分解成这样的组合:

∑ n = 0 ∞ ( a n 2 + b n + c ) x n = { c ⋅ 1 ∑ n = 0 ∞ 1 ⋅ x n ( a + b ) ⋅ x ∑ n = 0 ∞ n x n − 1 a ⋅ x 2 ∑ n = 0 ∞ n x n − 2 \sum_{n=0}^\infty (an^2+bn+c)x^n= \begin{cases} c·1 \sum_{n=0}^\infty 1·x^n\\ (a+b)·x \sum_{n=0}^\infty nx^{n-1}\\ a· x^2 \sum_{n=0}^\infty nx^{n-2} \end{cases} n=0(an2+bn+c)xn= c1n=01xn(a+b)xn=0nxn1ax2n=0nxn2

在接下来就写成了
c 1 1 − x + ( a + b ) x ( 1 1 − x ) ′ + a x 2 ( 1 1 − x ) ′ ′ c\frac1{1-x}+(a+b)x(\frac1{1-x})'+ax^2(\frac1{1-x})'' c1x1+(a+b)x(1x1)+ax2(1x1)′′

题目与思路

基本性质类

等比级数部分和公式

S ( x ) = a 0 1 − q  ,其中 q 是公比 S(x)=\frac{a_0}{1-q}\text{ ,}其中q是公比 S(x)=1qa0 ,其中q是公比

例如 ∑ n = 0 ∞ x 2 n + 1 = x 1 − x 2 \sum_{n=0}^\infty x^{2n+1} =\frac x {1-x^2} n=0x2n+1=1x2x

(以下内容与本小节标题无关)

∑ n = 0 ∞ ( 2 n + 1 ) x 2 n = ( ∑ n = 0 ∞ x 2 n + 1 ) ′ = x 1 − x 2 ′ \sum_{n=0}^\infty (2n+1)x^{2n}=(\sum_{n=0}^\infty x^{2n+1})'={\frac x {1-x^2}}' n=0(2n+1)x2n=(n=0x2n+1)=1x2x

显然这种方法比下面简单:

∑ n = 0 ∞ ( 2 n + 1 ) t n  ,随后带入 t = x 2 \sum_{n=0}^\infty (2n+1)t^{n}\text{ ,}随后带入t=x^2 n=0(2n+1)tn ,随后带入t=x2

上式的具体处理做法是拆成两个式子

∑ n = 0 ∞ ( 2 n + 1 ) t n = ∑ n = 0 ∞ t n + 2 t ∑ n = 0 ∞ n t n − 1 \sum_{n=0}^\infty (2n+1)t^{n}=\sum_{n=0}^\infty t^{n}+2t\sum_{n=0}^\infty nt^{n-1} n=0(2n+1)tn=n=0tn+2tn=0ntn1

展开类

将函数展开成幂级数

知乎 - 数学技巧篇43:函数展开成幂级数方法

就是找出一个 f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum_{n=0}^\infty a_n(x-x_0)^n=\sum_{n=0}^\infty\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0an(xx0)n=n=0n!f(n)(x0)(xx0)n

在这里插入图片描述
(图源网络)

某些特殊的形式可由上面的变换而来,例如 1 n ! \frac1{n!} n!1其实就是 e x e^x ex x = 1 x=1 x=1时的展开式,逆向操作就是对要展开的式子补 x x x,然后展开后给 x x x取特殊值

比如 e x e^x ex展成 x − 3 x-3 x3的级数,即改成 e 3 ⋅ e x − 3 e^3·e^{x-3} e3ex3,然后展后面的即可

某点高阶导数取值

利用泰勒展开后的形式,某阶导数会出现在展开式中
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n f(x)=n=0n!f(n)(x0)(xx0)n

若求 f ( 5 ) ( 0 ) f^{(5)}(0) f(5)(0),即根据泰勒展开式的定义,可以确定 x 0 = 0 x_0=0 x0=0。然后找展开式子中含 x 5 x^5 x5的地方的系数

x 2 ⋅ e x 3 = x 2 [ 1 + ( x 3 ) + 1 2 ! ( x 3 ) 2 + 1 2 ! ( x 3 ) 2 + . . . ] x^2·e^{\frac x3}=x^2[1+(\frac x3)+\frac1{2!}{(\frac {x}3})^2+\frac1{2!}{(\frac {x}3})^2+...] x2e3x=x2[1+(3x)+2!1(3x)2+2!1(3x)2+...]

f ( 5 ) ( 0 ) 5 ! x 5 = x 2 ⋅ 1 3 ! ( x 3 ) 3 → f ( 5 ) ( 0 ) 5 ! = 1 3 ! ⋅ 9 \frac{f^{(5)}(0)}{5!}x^5 = x^2·\frac1{3!}{(\frac {x}3})^3\to \frac{f^{(5)}(0)}{5!}=\frac{1}{3!·9} 5!f(5)(0)x5=x23!1(3x)35!f(5)(0)=3!91

ln ⁡ ( f ( x ) ) \ln (f(x)) ln(f(x))的幂级数展开

ln ⁡ ( 2 + x ) = ln ⁡ ( 1 + 1 + x ) = ( 1 + x ) − ( 1 + x ) 2 2 + ( 1 + x ) 3 3 . . . \ln(2+x)=\ln(1+1+x)=(1+x)-\frac{(1+x)^2}{2}+\frac{(1+x)^3}{3}... ln(2+x)=ln(1+1+x)=(1+x)2(1+x)2+3(1+x)3...

这是 1 + x 1+x 1+x的幂级数,不是 x x x的幂级数

ln ⁡ ( 2 + x ) = ln ⁡ 2 ( 1 + x 2 ) = ln ⁡ 2 + ln ⁡ ( 1 + x 2 ) \ln(2+x)=\ln{2(1+\frac x2)}=\ln2+\ln(1+\frac x2) ln(2+x)=ln2(1+2x)=ln2+ln(1+2x)

ln ⁡ ( 1 + x 2 ) \ln{(1+\frac x2)} ln(1+2x)才对

特殊展开式的预处理

sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 \sin^2x=\frac{1-\cos{2x}}{2} sin2x=21cos2x

收敛相关类

某处条件收敛的意义

在这里插入图片描述
利用广义性,换 x − 1 = t x-1=t x1=t,即可以转换为 ∑ x = 0 ∞ a n t n \sum_{x =0}^{\infty}a_nt^n x=0antn t = 1 t=1 t=1处条件收敛,然而条件不确定点只能是边界,小于这个点一定收敛,大于这个点一定发散,所以收敛半径是1
又由于 − 1 < t = x − 1 < 1 -1<t=x-1<1 1<t=x1<1 0 < x < 2 0<x<2 0<x<2,选D

求收敛区间

  • 先计算收敛半径再看端点
  • 或者直接求收敛区间

在这里插入图片描述

在这里插入图片描述
这里根值审敛开 2 n − 1 2n-1 2n1或者 n n n都行,右边的式子同理。左侧的式子是这样,其中 1 ∣ x ∣ \frac 1{|x|} x1是常数,开 n n n次方为1

2 2 n ⋅ 1 2 2 n − 1 ⋅ ∣ x ∣ 2 n ⋅ 1 ∣ x ∣ n = 4 ⋅ x 2 < 1 \sqrt[n]{\frac{2^{2n}·\frac 12}{2n-1}·|x|^{2n}·\frac 1{|x|}}=4·x^2<1 n2n122n21x2nx1 =4x2<1

右式如法炮制,然后收敛半径取两者之间较小的

其他技法

S ( x ) = ∑ n = 1 ∞ x n n = − ln ⁡ ( 1 − x )  , − 1 ≤ x < 1 S ( x ) = ∑ n = 1 ∞ n x n − 1 = 1 ( 1 − x ) 2 ,  , − 1 < x < 1 S(x)=\sum_{n=1}^\infty \frac{x^n}{n}=-\ln{(1-x)}\text{ ,}-1\le x<1 \\ S(x)=\sum_{n=1}^\infty nx^{n-1}=\frac{1}{(1-x)^2} ,\text{ ,}-1<x<1 S(x)=n=1nxn=ln(1x) ,1x<1S(x)=n=1nxn1=(1x)21, ,1<x<1

广义性的使用

指的是比如说对于和函数

∑ n = 2 ∞ x n n − 1 → ∑ n = 1 ∞ x n + 1 n \sum_{n=2}^\infty\frac{x^n}{n-1}\to \sum_{n=1}^\infty\frac{x^{n+1}}{n} n=2n1xnn=1nxn+1

另一方面 ∑ n = 1 ∞ x n n = − ln ⁡ ( 1 − x ) \sum_{n=1}^\infty\frac{x^n}{n}=-\ln (1-x) n=1nxn=ln(1x)

则有 ∑ n = 1 ∞ x n + 1 n = − x ln ⁡ ( 1 − x ) \sum_{n=1}^\infty\frac{x^{n+1}}{n}=-x\ln (1-x) n=1nxn+1=xln(1x)

如果提出去的不是 x x x而是 1 x \frac 1x x1,则 x x x的定义域还应注明 x ≠ 0 x\neq 0 x=0,当然, x x x原本的定义域尤其是两端到底能不能取到需要按题意进行处理

在这里插入图片描述
(上图补充:还少了 S ( 0 ) S(0) S(0)时的情况,因为写定义域时排除了 x = 0 x=0 x=0,对于这种情况还得单独求出来)

常数项级数构造幂级数

1993数学一

在这里插入图片描述
关于收敛半径是1的解释:对 n 2 − n + 1 n^2-n+1 n2n+1使用根值判别法,为什么不把 x 2 x^2 x2考虑在内?因为是要求 x x x的范围的,先当成范围边界的常数看(最后使用的时候也是 x = 1 2 x=\frac 12 x=21具体常数)

然后 1 R = lim ⁡ n → ∞ n 2 − n + 1 n \frac 1R =\lim_{n\to \infty} \sqrt[n]{n^2-n+1} R1=limnnn2n+1 求出 R = 1 R=1 R=1,处理方法是幂指函数,接着便有

S ( x ) = ∑ n = 0 ∞ ( n 2 − n + 1 ) x n − 1 S(x)=\sum_{n=0}^\infty(n^2-n+1)x^n-1 S(x)=n=0(n2n+1)xn1

为啥减一?因为下标 n n n变为了从0开始才能使用下面的变换,但是0又不在题目范围内,还得减去 n = 0 n=0 n=0的具体值

紧接着是下面的内容,即利用性质(参见另一篇博客:函数项级数与幂级数的内容)配出 ( n 2 − n + 1 ) x n (n^2-n+1)x^n (n2n+1)xn

∑ n = 0 ∞ x n = 1 1 − x , ∣ x ∣ < 1 \sum_{n=0}^\infty x^n = \frac 1 {1-x},|x|<1 n=0xn=1x1,x<1

  • 16
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值