数学分析 函数项级数(第13章)

一.一致收敛性
1.函数列及其一致收敛性
(1)函数列:
在这里插入图片描述
(2)函数列的极限及敛散性:
在这里插入图片描述
在这里插入图片描述
(3)一致收敛:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如果函数在区间 I I I上收敛,其在各点的收敛速度可能差别很大;但如果函数在区间 I I I上一致收敛,就需要其在各点的收敛速度大致相同

(4)函数列一致收敛性的判断:

定理13.1(函数列一致收敛的柯西准则):函数列 { f n } \{f_n\} {fn}在数集D上一致收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ε>0,NN+,使当 n . m > N n.m>N n.m>N时,对 ∀ x ∈ D ∀x∈D xD ∣ f n ( x ) − f m ( x ) ∣ < ε ( 4 ) |f_n(x)-f_m(x)|<ε\qquad(4) fn(x)fm(x)<ε(4)
在这里插入图片描述
在这里插入图片描述

定理13.2:函数列 { f n } \{f_n\} {fn}在数集D上一致收敛于 f f f的充要条件是: lim ⁡ n → ∞ s u p x ∈ D ∣ f n ( x ) − f ( x ) ∣ = 0 \displaystyle\lim_{n \to \infty}sup_{x∈D}|f_n(x)-f(x)|=0 nlimsupxDfn(x)f(x)=0
在这里插入图片描述

推论:函数列 { f n } \{f_n\} {fn}在区间D上不一致收敛于 f f f的充要条件是: ∃ { x n } ⊂ D ∃\{x_n\}\sub D {xn}D,使 { f n ( x n ) − f ( x n ) } \{f_n(x_n)-f(x_n)\} {fn(xn)f(xn)}不收敛于0

(5)内闭一致收敛:
在这里插入图片描述

如果 I I I为闭区间,在 I I I上一致收敛和在 I I I上内闭一致收敛等价(因为 I I I本身也是1个子区间);如果 I I I至少有1侧是开的,则在 I I I上一致连续可保证在 I I I上内闭一致连续,反之不成立(因为端点的性质可能"不好")

在这里插入图片描述
在这里插入图片描述

内闭一致收敛的概念使我们可以抛开性质"不好"的端点来考察区间的其余部分
这里的性质"不好"是指函数在该点不收敛或收敛速度与其他点相差过大(趋于 0 0 0 ∞ \infty )

2.函数项级数及其一致收敛性
(1)函数项级数:
在这里插入图片描述
(2)函数项级数的敛散性:
在这里插入图片描述
在这里插入图片描述
(3)函数项级数一致收敛的充要条件:

定理13.3(函数项级数一致收敛的柯西准则):函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ε>0,NN+,使当 n > N n>N n>N时,对 ∀ x ∈ D ∀x∈D xD ∀ p ∈ N + ∀p∈N_+ pN+ ∣ S n + p ( x ) − S n ( x ) ∣ < ε |S_{n+p}(x)-S_n(x)|<ε Sn+p(x)Sn(x)<ε ∣ u n + 1 ( x ) + . . . + u n + p ( x ) ∣ < ε |u_{n+1}(x)+...+u_{n+p}(x)|<ε un+1(x)+...+un+p(x)<ε此定理中,当 p = 1 p=1 p=1时,得到函数项级数一致收敛的1个必要条件

推论:函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛的必要条件是函数列 { u n ( x ) } \{u_n(x)\} {un(x)}在D上一致收敛于0

定理13.4:函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛于 S ( x ) S(x) S(x)的充要条件是: lim ⁡ n → ∞ s u p x ∈ D ∣ R n ( x ) ∣ = lim ⁡ n → ∞ s u p x ∈ D ∣ S ( x ) − S n ( x ) ∣ = 0 \displaystyle\lim_{n \to \infty}sup_{x∈D}|R_n(x)|=\displaystyle\lim_{n \to \infty}sup_{x∈D}|S(x)-S_n(x)|=0 nlimsupxDRn(x)=nlimsupxDS(x)Sn(x)=0

(4)函数项级数的余项:
在这里插入图片描述
3.函数项级数的一致收敛性判别法
(1)魏尔斯特拉斯判别法(M判别法,优级数判别法):

定理13.5:设函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)定义在数集D上, ∑ M n \sum M_n Mn为收敛的正项级数,若对 ∀ x ∈ D ∀x∈D xD ∣ u n ( x ) ∣ ≤ M n   ( n = 1 , 2... ) ( 12 ) |u_n(x)|≤M_n\,(n=1,2...)\qquad(12) un(x)Mn(n=1,2...)(12) ∑ u n ( x ) \sum u_n(x) un(x)在D上一致收敛
在这里插入图片描述
在这里插入图片描述

(2)阿贝尔判别法与狄利克雷判别法:
在这里插入图片描述

定理13.6(阿贝尔判别法):设
∑ u n ( x ) \sum u_n(x) un(x)在区间 I I I上一致收敛
②对 ∀ x ∈ I , { V n ( x ) } ∀x∈I,\{V_n(x)\} xI,{Vn(x)}单调
{ V n ( x ) } \{V_n(x)\} {Vn(x)} I I I上一致有界,且 ∃ M > 0 ∃M>0 M>0,使对 ∀ x ∈ I , ∀ n ∈ N + ∀x∈I,∀n∈N_+ xI,nN+,有 ∣ v n ( x ) ∣ ≤ M |v_n(x)|≤M vn(x)M
则级数(13)在 I I I上一致收敛
在这里插入图片描述
在这里插入图片描述

定理13.7(狄利克雷判别法):设
∑ u n ( x ) \sum u_n(x) un(x)的部分和函数列 S n ( x ) = ∑ k = 1 n u k ( x )   ( n = 1 , 2... ) S_n(x)=\displaystyle\sum_{k=1}^nu_k(x)\,(n=1,2...) Sn(x)=k=1nuk(x)(n=1,2...) I I I上一致有界
②对 ∀ x ∈ I , { V n ( x ) } ∀x∈I,\{V_n(x)\} xI,{Vn(x)}单调
③在 I I I v n ( x ) ⇉ 0   ( n → ∞ ) v_n(x)⇉0\,(n\to\infty) vn(x)0(n)
则级数(13)在 I I I上一致收敛
在这里插入图片描述

二.一致收敛函数列与函数项级数的性质
在这里插入图片描述
1.一致收敛数列的性质
(1)独立变量求极限的顺序可交换:

定理13.8:设函数列 { f n } \{f_n\} {fn} ( a , x 0 ) ∪ ( x 0 , b ) (a,x_0)∪(x_0,b) (a,x0)(x0,b)上一致收敛于 f ( x ) f(x) f(x),且对 ∀ n , lim ⁡ x → x 0 f n ( x ) = a n ∀n,\displaystyle\lim_{x\to x_0}f_n(x)=a_n n,xx0limfn(x)=an,则 lim ⁡ n → ∞ a n , lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{n\to\infty}a_n,\displaystyle\lim_{x\to x_0}f(x) nliman,xx0limf(x)均存在且相等
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)连续性:

定理13.9:若函数列 { f n } \{f_n\} {fn}在区间 I I I上一致收敛,且每项都连续,则其极限函数 f f f I I I上也连续
在这里插入图片描述
在这里插入图片描述

由于 f ( x ) f(x) f(x) x x x的连续性仅与其在 x x x附近的性质有关,故有以下推论
推论:若连续函数列 { f n } \{f_n\} {fn}在区间 I I I上内闭一致收敛于 f f f,则 f f f I I I上连续

(3)可积性:

定理13.10:若函数列 { f n } \{f_n\} {fn}在[a,b]上一致连续,且每项都连续,则 ∫ a b lim ⁡ n → ∞ f n ( x ) d x = lim ⁡ n → ∞ ∫ a b f n ( x ) d x ( 3 ) \int_a^b\displaystyle\lim_{n\to\infty}f_n(x)dx=\displaystyle\lim_{n\to\infty}\int_a^bf_n(x)dx\qquad(3) abnlimfn(x)dx=nlimabfn(x)dx(3)
在这里插入图片描述
该定理指出:在一致连续的条件下,极限运算与积分运算可交换顺序
注意:当函数列 { f n } \{f_n\} {fn}收敛于 f ( x ) f(x) f(x)时,一致连续性是积分运算与极限运算交换顺序的充分条件,而不是必要条件

(4)可微性:

定理13.11:设 { f n } \{f_n\} {fn}为定义在[a,b]上的函数列,若 x 0 ∈ [ a , b ] x_0∈[a,b] x0[a,b] { f n } \{f_n\} {fn}的收敛点, { f n } \{f_n\} {fn}的每项在[a,b]上均有连续导数,且 { f n ′ } \{f'_n\} {fn}在[a,b]上一致连续,则 d d x ( lim ⁡ n → ∞ f n ( x ) ) = lim ⁡ n → ∞ d d x f n ( x ) ( 4 ) \frac{d}{dx}(\displaystyle\lim_{n\to\infty}f_n(x))=\displaystyle\lim_{n\to\infty}\frac{d}{dx}f_n(x)\qquad(4) dxd(nlimfn(x))=nlimdxdfn(x)(4)
在这里插入图片描述
在该定理的条件下,还可推出在[a,b]上 f n ⇉ f   ( n → ∞ ) f_n⇉f\,(n\to\infty) fnf(n)
该定理指出:在一致连续的条件下,极限运算与求导运算可交换顺序
注意:一致连续性是极限运算与求导运算交换顺序的充分条件,而不是必要条件

由于可微性是局部性质,故有以下推论
推论:设函数列 { f n } \{f_n\} {fn}定义在区间 I I I上,若 x 0 ∈ [ a , b ] x_0∈[a,b] x0[a,b] { f n } \{f_n\} {fn}的收敛点,且 { f n ′ } \{f'_n\} {fn}在[a,b]上一致连续,则 f f f I I I上可导,且 f ′ ( x ) = lim ⁡ n → ∞ f n ′ ( x ) f'(x)=\displaystyle\lim_{n\to\infty}f_n'(x) f(x)=nlimfn(x)

2.函数项级数的性质
(1)连续性:

定理13.12:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上一致收敛,且每项都连续,则其和函数在[a,b]上连续
该定理指出:在一致连续的条件下,(无限项)求和运算与极限运算可交换顺序,即: ∑ ( lim ⁡ x → x 0 u n ( x ) ) = lim ⁡ x → x 0 ( ∑ u n ( x ) ) ( 6 ) \sum(\displaystyle\lim_{x\to x_0}u_n(x))=\displaystyle\lim_{x\to x_0}(\sum u_n(x))\qquad(6) (xx0limun(x))=xx0lim(un(x))(6)

(2)逐项求导:

定理13.13:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上一致收敛,且每项都连续,则 ∑ ∫ a b u n ( x ) d x = ∫ a b ∑ u n ( x ) d x ( 7 ) \sum\int_a^bu_n(x)dx=\int_a^b\sum u_n(x)dx\qquad(7) abun(x)dx=abun(x)dx(7)
一致收敛的条件可减弱为内闭一致收敛
该定理指出:在一致连续的条件下,逐项求导运算与求和运算可交换顺序

(3)逐项求积:

定理13.14:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上每项都有连续的导数, ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上收敛,且 ∑ u n ′ ( x ) \sum u_n'(x) un(x)在[a,b]上一致连续,则 ∑ ( d d x u n ( x ) ) = d d x ( ∑ u n ( x ) ) ( 8 ) \sum(\frac{d}{dx}u_n(x))=\frac{d}{dx}(\sum u_n(x))\qquad(8) (dxdun(x))=dxd(un(x))(8)
一致收敛的条件可减弱为内闭一致收敛
该定理指出:在一致连续的条件下,逐项求积运算与求和运算可交换顺序

三.幂级数
参见 幂级数 部分

四.傅里叶级数
参见 傅里叶级数部分

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值