数学分析 函数项级数(第13章)

一.一致收敛性
1.函数列及其一致收敛性
(1)函数列:
在这里插入图片描述
(2)函数列的极限及敛散性:
在这里插入图片描述
在这里插入图片描述
(3)一致收敛:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如果函数在区间 I I I上收敛,其在各点的收敛速度可能差别很大;但如果函数在区间 I I I上一致收敛,就需要其在各点的收敛速度大致相同

(4)函数列一致收敛性的判断:

定理13.1(函数列一致收敛的柯西准则):函数列 { f n } \{f_n\} {fn}在数集D上一致收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ε>0,NN+,使当 n . m > N n.m>N n.m>N时,对 ∀ x ∈ D ∀x∈D xD ∣ f n ( x ) − f m ( x ) ∣ < ε ( 4 ) |f_n(x)-f_m(x)|<ε\qquad(4) fn(x)fm(x)<ε(4)
在这里插入图片描述
在这里插入图片描述

定理13.2:函数列 { f n } \{f_n\} {fn}在数集D上一致收敛于 f f f的充要条件是: lim ⁡ n → ∞ s u p x ∈ D ∣ f n ( x ) − f ( x ) ∣ = 0 \displaystyle\lim_{n \to \infty}sup_{x∈D}|f_n(x)-f(x)|=0 nlimsupxDfn(x)f(x)=0
在这里插入图片描述

推论:函数列 { f n } \{f_n\} {fn}在区间D上不一致收敛于 f f f的充要条件是: ∃ { x n } ⊂ D ∃\{x_n\}\sub D {xn}D,使 { f n ( x n ) − f ( x n ) } \{f_n(x_n)-f(x_n)\} {fn(xn)f(xn)}不收敛于0

(5)内闭一致收敛:
在这里插入图片描述

如果 I I I为闭区间,在 I I I上一致收敛和在 I I I上内闭一致收敛等价(因为 I I I本身也是1个子区间);如果 I I I至少有1侧是开的,则在 I I I上一致连续可保证在 I I I上内闭一致连续,反之不成立(因为端点的性质可能"不好")

在这里插入图片描述
在这里插入图片描述

内闭一致收敛的概念使我们可以抛开性质"不好"的端点来考察区间的其余部分
这里的性质"不好"是指函数在该点不收敛或收敛速度与其他点相差过大(趋于 0 0 0 ∞ \infty )

2.函数项级数及其一致收敛性
(1)函数项级数:
在这里插入图片描述
(2)函数项级数的敛散性:
在这里插入图片描述
在这里插入图片描述
(3)函数项级数一致收敛的充要条件:

定理13.3(函数项级数一致收敛的柯西准则):函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛的充要条件是:对 ∀ ε > 0 , ∃ N ∈ N + ∀ε>0,∃N∈N_+ ε>0,NN+,使当 n > N n>N n>N时,对 ∀ x ∈ D ∀x∈D xD ∀ p ∈ N + ∀p∈N_+ pN+ ∣ S n + p ( x ) − S n ( x ) ∣ < ε |S_{n+p}(x)-S_n(x)|<ε Sn+p(x)Sn(x)<ε ∣ u n + 1 ( x ) + . . . + u n + p ( x ) ∣ < ε |u_{n+1}(x)+...+u_{n+p}(x)|<ε un+1(x)+...+un+p(x)<ε此定理中,当 p = 1 p=1 p=1时,得到函数项级数一致收敛的1个必要条件

推论:函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛的必要条件是函数列 { u n ( x ) } \{u_n(x)\} {un(x)}在D上一致收敛于0

定理13.4:函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在数集D上一致收敛于 S ( x ) S(x) S(x)的充要条件是: lim ⁡ n → ∞ s u p x ∈ D ∣ R n ( x ) ∣ = lim ⁡ n → ∞ s u p x ∈ D ∣ S ( x ) − S n ( x ) ∣ = 0 \displaystyle\lim_{n \to \infty}sup_{x∈D}|R_n(x)|=\displaystyle\lim_{n \to \infty}sup_{x∈D}|S(x)-S_n(x)|=0 nlimsupxDRn(x)=nlimsupxDS(x)Sn(x)=0

(4)函数项级数的余项:
在这里插入图片描述
3.函数项级数的一致收敛性判别法
(1)魏尔斯特拉斯判别法(M判别法,优级数判别法):

定理13.5:设函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)定义在数集D上, ∑ M n \sum M_n Mn为收敛的正项级数,若对 ∀ x ∈ D ∀x∈D xD ∣ u n ( x ) ∣ ≤ M n   ( n = 1 , 2... ) ( 12 ) |u_n(x)|≤M_n\,(n=1,2...)\qquad(12) un(x)Mn(n=1,2...)(12) ∑ u n ( x ) \sum u_n(x) un(x)在D上一致收敛
在这里插入图片描述
在这里插入图片描述

(2)阿贝尔判别法与狄利克雷判别法:
在这里插入图片描述

定理13.6(阿贝尔判别法):设
∑ u n ( x ) \sum u_n(x) un(x)在区间 I I I上一致收敛
②对 ∀ x ∈ I , { V n ( x ) } ∀x∈I,\{V_n(x)\} xI,{Vn(x)}单调
{ V n ( x ) } \{V_n(x)\} {Vn(x)} I I I上一致有界,且 ∃ M > 0 ∃M>0 M>0,使对 ∀ x ∈ I , ∀ n ∈ N + ∀x∈I,∀n∈N_+ xI,nN+,有 ∣ v n ( x ) ∣ ≤ M |v_n(x)|≤M vn(x)M
则级数(13)在 I I I上一致收敛
在这里插入图片描述
在这里插入图片描述

定理13.7(狄利克雷判别法):设
∑ u n ( x ) \sum u_n(x) un(x)的部分和函数列 S n ( x ) = ∑ k = 1 n u k ( x )   ( n = 1 , 2... ) S_n(x)=\displaystyle\sum_{k=1}^nu_k(x)\,(n=1,2...) Sn(x)=k=1nuk(x)(n=1,2...) I I I上一致有界
②对 ∀ x ∈ I , { V n ( x ) } ∀x∈I,\{V_n(x)\} xI,{Vn(x)}单调
③在 I I I v n ( x ) ⇉ 0   ( n → ∞ ) v_n(x)⇉0\,(n\to\infty) vn(x)0(n)
则级数(13)在 I I I上一致收敛
在这里插入图片描述

二.一致收敛函数列与函数项级数的性质
在这里插入图片描述
1.一致收敛数列的性质
(1)独立变量求极限的顺序可交换:

定理13.8:设函数列 { f n } \{f_n\} {fn} ( a , x 0 ) ∪ ( x 0 , b ) (a,x_0)∪(x_0,b) (a,x0)(x0,b)上一致收敛于 f ( x ) f(x) f(x),且对 ∀ n , lim ⁡ x → x 0 f n ( x ) = a n ∀n,\displaystyle\lim_{x\to x_0}f_n(x)=a_n n,xx0limfn(x)=an,则 lim ⁡ n → ∞ a n , lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{n\to\infty}a_n,\displaystyle\lim_{x\to x_0}f(x) nliman,xx0limf(x)均存在且相等
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)连续性:

定理13.9:若函数列 { f n } \{f_n\} {fn}在区间 I I I上一致收敛,且每项都连续,则其极限函数 f f f I I I上也连续
在这里插入图片描述
在这里插入图片描述

由于 f ( x ) f(x) f(x) x x x的连续性仅与其在 x x x附近的性质有关,故有以下推论
推论:若连续函数列 { f n } \{f_n\} {fn}在区间 I I I上内闭一致收敛于 f f f,则 f f f I I I上连续

(3)可积性:

定理13.10:若函数列 { f n } \{f_n\} {fn}在[a,b]上一致连续,且每项都连续,则 ∫ a b lim ⁡ n → ∞ f n ( x ) d x = lim ⁡ n → ∞ ∫ a b f n ( x ) d x ( 3 ) \int_a^b\displaystyle\lim_{n\to\infty}f_n(x)dx=\displaystyle\lim_{n\to\infty}\int_a^bf_n(x)dx\qquad(3) abnlimfn(x)dx=nlimabfn(x)dx(3)
在这里插入图片描述
该定理指出:在一致连续的条件下,极限运算与积分运算可交换顺序
注意:当函数列 { f n } \{f_n\} {fn}收敛于 f ( x ) f(x) f(x)时,一致连续性是积分运算与极限运算交换顺序的充分条件,而不是必要条件

(4)可微性:

定理13.11:设 { f n } \{f_n\} {fn}为定义在[a,b]上的函数列,若 x 0 ∈ [ a , b ] x_0∈[a,b] x0[a,b] { f n } \{f_n\} {fn}的收敛点, { f n } \{f_n\} {fn}的每项在[a,b]上均有连续导数,且 { f n ′ } \{f'_n\} {fn}在[a,b]上一致连续,则 d d x ( lim ⁡ n → ∞ f n ( x ) ) = lim ⁡ n → ∞ d d x f n ( x ) ( 4 ) \frac{d}{dx}(\displaystyle\lim_{n\to\infty}f_n(x))=\displaystyle\lim_{n\to\infty}\frac{d}{dx}f_n(x)\qquad(4) dxd(nlimfn(x))=nlimdxdfn(x)(4)
在这里插入图片描述
在该定理的条件下,还可推出在[a,b]上 f n ⇉ f   ( n → ∞ ) f_n⇉f\,(n\to\infty) fnf(n)
该定理指出:在一致连续的条件下,极限运算与求导运算可交换顺序
注意:一致连续性是极限运算与求导运算交换顺序的充分条件,而不是必要条件

由于可微性是局部性质,故有以下推论
推论:设函数列 { f n } \{f_n\} {fn}定义在区间 I I I上,若 x 0 ∈ [ a , b ] x_0∈[a,b] x0[a,b] { f n } \{f_n\} {fn}的收敛点,且 { f n ′ } \{f'_n\} {fn}在[a,b]上一致连续,则 f f f I I I上可导,且 f ′ ( x ) = lim ⁡ n → ∞ f n ′ ( x ) f'(x)=\displaystyle\lim_{n\to\infty}f_n'(x) f(x)=nlimfn(x)

2.函数项级数的性质
(1)连续性:

定理13.12:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上一致收敛,且每项都连续,则其和函数在[a,b]上连续
该定理指出:在一致连续的条件下,(无限项)求和运算与极限运算可交换顺序,即: ∑ ( lim ⁡ x → x 0 u n ( x ) ) = lim ⁡ x → x 0 ( ∑ u n ( x ) ) ( 6 ) \sum(\displaystyle\lim_{x\to x_0}u_n(x))=\displaystyle\lim_{x\to x_0}(\sum u_n(x))\qquad(6) (xx0limun(x))=xx0lim(un(x))(6)

(2)逐项求导:

定理13.13:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上一致收敛,且每项都连续,则 ∑ ∫ a b u n ( x ) d x = ∫ a b ∑ u n ( x ) d x ( 7 ) \sum\int_a^bu_n(x)dx=\int_a^b\sum u_n(x)dx\qquad(7) abun(x)dx=abun(x)dx(7)
一致收敛的条件可减弱为内闭一致收敛
该定理指出:在一致连续的条件下,逐项求导运算与求和运算可交换顺序

(3)逐项求积:

定理13.14:若函数项级数 ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上每项都有连续的导数, ∑ u n ( x ) \sum u_n(x) un(x)在[a,b]上收敛,且 ∑ u n ′ ( x ) \sum u_n'(x) un(x)在[a,b]上一致连续,则 ∑ ( d d x u n ( x ) ) = d d x ( ∑ u n ( x ) ) ( 8 ) \sum(\frac{d}{dx}u_n(x))=\frac{d}{dx}(\sum u_n(x))\qquad(8) (dxdun(x))=dxd(un(x))(8)
一致收敛的条件可减弱为内闭一致收敛
该定理指出:在一致连续的条件下,逐项求积运算与求和运算可交换顺序

三.幂级数
参见 幂级数 部分

四.傅里叶级数
参见 傅里叶级数部分

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
复变函数与积分变换 作 者: 王志勇 编 出版时间:2014 内容简介   本书是参照近年全国高校工科数学教学指导委员会工作会议的意见,结合电子类工科实际编写而成的。内容设计简明,叙述通俗易懂,定位应用和能力培养,具有针对性、先进性和系统性。本书内容包括复变函数与解析函数、复变函数的积分、级数与留数、傅立叶变换、拉普拉斯变换、Z变换与小波变换。每习题配有基础和提高两种题型,编有相关科学家介绍,便于读者自学。本书可作为高等院校相关专业的数学教材,也可供科学和工程技术人员参考使用。 目录 第1复变函数与解析函数(1) 1.1复数(2) 1.1.1复数的概念(2) 1.1.2复数的表示法(2) 1.1.3复数的运算(4) 1.1.4复球面(7) 1.2复变函数(8) 1.2.1区域(8) 1.2.2复变函数的概念(10) 1.2.3复变函数极限及连续性(11) 1.3解析函数(13) 1.3.1导数与微分(13) 1.3.2解析函数(15) 1.3.3初等函数(18) *1.4保角映射(22) 1.4.1保角映射的概念(22) 1.4.2几种简单的保角映射(24) 数学家简介——欧拉(27) 习题一(29) 第2复变函数的积分(31) 2.1复变函数的积分(32) 2.1.1复积分的概念(32) 2.1.2复积分的性质(33) 2.1.3复积分的计算(33) 2.2柯西积分定理(37) 2.2.1柯西基本定理(37) 2.2.2复合闭路定理(40) 2.3柯西积分公式(42) 2.3.1柯西积分公式(42) 2.3.2解析函数的高阶导数(45) 2.3.3解析函数与调和函数(48) 数学家简介——柯西(51) 习题二(52) 第3 级数与留数(54) 3.1幂级数及其展开(54) 3.1.1幂级数(54) 3.1.2泰勒级数(60) 3.2洛朗级数及其展开式(62) 3.2.1双边幂级数(62) 3.2.2洛朗级数(63) 3.3留数(65) 3.3.1孤立奇点(65) 3.3.2留数的概念及留数定理(68) 3.3.3留数的计算(69) 3.4留数的应用(71) 3.4.1 计算∫2π0f(cosθ,sinθ)dθ型积分(71) 3.4.2计算∫+∞-∞P(x)Q(x)dx型积分(72) ?3.4.3计算∫+∞-∞f(x)eiλxdx型积分(73) 数学家简介——泰勒(76) 习题三(77) 第4傅里叶变换(79) 4.1傅里叶变换(79) 4.1.1傅里叶级数的复指数形式(79) 4.1.2傅里叶变换(81) 4.2傅里叶变换的性质(87) 4.2.1傅里叶变换的性质(87) 4.2.2卷积(88) 4.3离散傅里叶变换及其性质(91) *4.3.1离散傅里叶变换的定义(91) 4.3.2离散傅里叶变换的基本性质(92) 4.4傅里叶变换的应用(94) 4.4.1解积分、微分方程问题(94) 4.4.2求解偏微分方程问题(95) 4.4.3电路系统求解问题(96) 数学家简介——傅里叶(97) 习题四(98) 第5拉普拉斯变换与z变换(100) 5.1拉普拉斯变换的概念(101) 5.1.1问题的提出(101) 5.1.2拉普拉斯变换的定义(101) 5.1.3拉普拉斯变换的存在定理(102) 5.2拉普拉斯变换的性质(103) 5.2.1基本性质(103) 5.2.2卷积(106) *5.2.3极限性质(108) 5.3拉普拉斯逆变换(109) 5.4拉普拉斯变换的应用(110) 5.5z变换(113) 5.5.1z变换的定义(114) 5.5.2z变换的逆变换(115) 5.5.3z变换的性质和应用(117) 5.5.4z变换与拉普拉斯变换的关系(117) *5.6小波变换简介(118) 5.6.1傅里叶变换的局限(119) 5.6.2窗口傅里叶变换(119) 5.6.3小波变换(120) 5.6.4小波变换的性质(122) 数学家简介——拉普拉斯(124) 习题五(125) 附录习题答案(128)
作者: 谢惠民 出版社: 高等教育 出版年: 2004-1 页数: 408 定价: 33.90元 装帧: 平装 ISBN: 9787040129410 内容简介 · · · · · · 《数学分析习题课讲义(下册)》是教育部“国家理科基地创建名牌课程目”的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。《数学分析习题课讲义(下册)》以编著者们近20年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲题中强调启发式和逐步深入,在习题的选取中致力于对传统内容的更新、补充与层次化。 《数学分析习题课讲义(下册)》分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 《数学分析习题课讲义(下册)》可作为高等院校理工科教师和学生在数学分析习题课方面的教材或参考书,也可以作为研究生入学考试和其他人员的数学分析辅导书。 目录 · · · · · · 第十三级数 513.1 无穷级数的基本概念 13.1.1 无穷级数的多种视角 13.1.2 思考题 §13.2 正级数 13.2.1 比较判别法的一般形式 13.2.2 比较判别法的特殊形式 13.2.3 其他判别法 13.2.4 例题 13.2.5 练习题 §13.3 一般级数 13.3.1 一般级数的敛散性判别法 13.3.2 一般级数的基本性质 13.3.3 例题 13.3.4 练习题 §13.4 无穷乘积 13.4.1 基本内容 13.4.2 例题 13.4.3 练习题 §13.5 对于教学的建议 13.5.1 学习要点 13.5.2 参考题 第十四 函数级数与幂级数 514.1 一致收敛性及其判别法 14.1.1 基本内容 14.1.2 例题 14.1.3 练习题 §14.2 和函数极限函数的性质 14.2.1 三分法与极限顺序交换原理 14.2.2 例题 14.2.3 准一致收敛与控制收敛定理 14.2.4 练习题 §14.3 幂级数的收敛域与和函数 14.3.1 幂级数的基本理论 14.3.2 思考题 14.3.3 例题 14.3.4 练习题 §14.4 函数的幂级数展开 14.4.1 Taylor级数函数的幂级数展开 14.4.2 将函数展开为幂级数的基本方法 14.4.3 例题 14.4.4 练习题 §14.5 对于教学的建议 14.5.1 学习要点 15.5.2 参考题 第十五 Fourier级数 §15.1 Fourier系数 15.1.1 Fourier系数的计算公式 15.1.2 Fourier系数的渐近性质 15.1.3 Fourier系数的几何意义 15.1.4 例题 15.1.5 练习题 515.2 Fourier级数收敛性 15.2.1 Dirichler核和点收敛性 15.2.2 Gibbs现象 15.2.3 Fourier级数的?eshro求和 15.2.4 Fourier级数的平方平均收敛 15.2.5 Fourier级数一致收敛性 15.2.6 例题 15.2.7 练习题 §15.3 对于教学的建议 15.3.1 学习要点 15.3.2 参考题 第十六 无穷级数的应用 §16.1 积分计算 16.1.1 关于逐积分的补充命题 16.1.2 例题 16.1.3 练习题 §16.2 级数求和计算 16.2.1 级数求和法 16.2.2 例题 16.2.3 练习题 §16.3 连续函数的逼近定理 16.3.1 核函数方法 16.3.2 Bernstein证明的概率解释 16.3.3 逼近定理的一个初等证明 16.3.4 逼近定理的其他证明 16.3.5 逼近定理的应用举例 16.3.6 练习题 16.4 用级数构造函数 16.4.1 处处连续处处不可微的函数 16.4.2 填满正方形的连续曲线 §16.5 对于教学的建议 16.5.1 学习要点 16.5.2 参考题 第十七 高维空间的点集与基本定理 §17.1 点与点集的定义及其基本性质 17.1.1 点的分类及其性质 17.1.2 集合的分类及其性质 17.1.3 思考题 17.1.4 练习题 §17.2 R中的几个基本定理 17.2.1 综述 17.2.2 例题 17.2.3 练习题 §1.7.3 对于教学的建议 17.3.1 学习要点 17.3.2 参考题 第十八 多元函数极限与连续 518.1 多元函数极限 18.1.1 重极限 18.1.2 累次极限 18.1.3 证明函数的重极限不存在的常用方法 18.1.4 思考题 18.1.5 关于累次极限换序 18.1.6 练习题 §18.2 多元函数的连续性 18.2.1 定义与基本性质 18.2.2 紧集上多元连续函数的性质 18.2.3 多元连续函数的介值定理 18.2.4 向量值函数 18.2.5 练习题 §18.3 对于教学的建议 18.3.1 学习要点 18.3.2 参考题 第十九 偏导数与全微分 §19.1 偏导数 19.1.1 偏导数的定义 19.1.2 偏导数与连续 19.1.3 高阶偏导数 §19.2 全微分 19.2.1 全微分的定义与基本性质 19.2.2 多元函数的连续性、偏导数存在性及可微性之间的关系 19.2.3 思考题 19.2.4 练习题 §19.3 复合函数求导链式法则 19.3.1 复合函数偏导数的链式法则 19.3.2 例题 19.3.3 齐次函数 19.3.4 练习题 519.4.向量值函数的微分学定理 19.4.1 有限增量公式与拟微分平均值定理 19.4.2 练习题 §19.5 对于教学的建议 19.5.1 学习要点 19.5.2 参考题 第二十函数存在定理与隐函数求导 520.1 一个方程的情形 20.1.1 隐函数存在定理 20.1.2 隐函数求导 20.1.3 思考题 20.1.4 练习题 §20.2 隐函数组 20.2.1 存在定理 20.2.2 思考题 20.2.3 求已知函数组所确定的隐函数组的导数 20.2.4 存在定理的证明 20.2.5 练习题 §20.3 变量代换问题 20.3.1 仅变换自变量的情形 20.3.2 自变量与函数同时变换的情形 20.3.3 练习题 §20.4 隐函数及隐函数组的整体存在性 §20.5 对于教学的建议 20.5.1 学习要点 20.5.2 参考题 第二十一 偏导数的应用 §21.1 偏导数在几何上的应用 21.1.1 曲线的切向量、切线与法平面 21.1.2 曲面的法向量、法线和切平面 21.1.3 曲线的夹角、曲面的夹角 21.1.4 练习题 §21.2 方向导数与梯度 21.2.1 方向导数 21.2.2 梯度 21.2.3 练习题 §21.3 Taylor公式与极值问题 21.3.1 Taylor公式 21.3.2 极值问题 21.3.3 最大最小值问题 21.3.4.练习题 §21.4 条件极值与条件最值 21.4.1 条件极值 21.4.2 条件最值 21.4.3 隐函数的极值 21.4.4 练习题 §21.5 高维Rolle定理 §21.6 对于教学的建议 21.6.1 学习要点 21.6.2 参考题 第二十二 重积分 §22.1 二重积分的概念 22.1.1 二重积分的定义 22.1.2 可积函数类 22.1.3 思考题 22.1.4 练习题 §22.2 二重积分的计算 22.2.1 矩形区域上的二重积分 22.2.2 一般区域上的二重积分 22.2.3 二重积分的变量替换 22.2.4 练习题 §22.3 三重积分,n重积分 22.3.1 三重积分在直角坐标系中的计算 …… 第二十三 含参变量积分 第二十四 曲线积分 第二十五 曲面积分 第二十六 场论初步 参考提示 参考文献 中文名词索引 外文名词索引
数学物理方法与复数特殊函数 作者:张承宗 著 出版时间:2014年版 内容简介 《数学物理方法与复数特殊函数》以数学物理方程解析求解为背景,系统介绍了求解直角坐标、斜交坐标系和极坐标、圆柱坐标、球坐标下数学物理方程的基本方法,阐述了直角坐标系、斜交坐标系下求解数学物理方程的复数级数法(复数分离变量法),提出并研究分析了求解柱(极)坐标、球坐标下各向异性数学物理方程的复数柱多式与复数柱函数、复数柱对称函数、变形复数柱多式、复数柱体函数、复数球柱多式、变形复数球柱多式、B型柱多式、C型复数柱多式、复数一般各向异性柱多式与变形复数球柱函数、复数球柱函数、变形复数柱面函数、复数柱面函数、复数球多式与复数球面函数、参数复数球多式与参数复数球面函数、连带复数球多式与连带复数球面函数、参数连带复数球多式与参数连带复数球面函数等系复数特殊函数;提出了Zip方程,变形Zip方程,球Zip方程,变形球Zip方程,各向异性柱对称方程,B型各向异性柱方程,C型各向异性柱方程,一般各向异性柱方程等;提出并证明了复数柱函数展开定理、复数柱体函数展开定理、复数球柱函数展开定理、复数柱面函数展开定理等;提出了复数球面函数展开法,连带复数球面函数展开法,参数连带复数球面函数展开法等;提出了数学物理方法中解的实数化原理;应用系复数特殊函数完成了对各向异性热传导偏微分方程在二维、三维和稳态、非稳态状态下圆形域、柱体和球面域内相关数学物理问题的求解,理论分析证明和数值计算均表明相关工作是成功。此外,针对柱坐标下的数学物理方法提出了系复数柱函数变换,并求解了各向异性波动方程。作者发现:经典贝塞尔函数、勒让德函数、实数幂级数、汉克尔变换等是《数学物理方法与复数特殊函数》提出了系复数特殊函数、变换特例,在处理各向同性相关数学物理问题时,经典贝塞尔函数、实数幂级数和勒让德函数、汉克尔变换等与作者新提出的系复数特殊函数函数变换是一致的,新的系复数特殊函数函数变换是更广义的方法,可以处理更为一般的各向异性数学物理问题和偏微分方程。   《数学物理方法与复数特殊函数》可作为数学、物理和工程领域相关科研教学人员与研究生、本科生参考。 目录 第1 绪论 1.1 引言 1.2 基本概念 1.3 线性偏微分方程基本性质 1.4 二阶线性偏微分方程 1.5 定解条件和定解问题 1.6 适定性 1.7 叠加原理 1.8 傅立叶级数 1.8.1 单重傅立叶级数 1.8.2 二重傅立叶级数 1.8.3 三重傅立叶级数 1.9 积分变换 1.9.1 傅立叶积分变换 1.9.2 拉普拉斯变换 1.9.3 梅林变换 1.9.4 汉克尔变换 1.9.5 勒让德变换 1.10 伽马函数 第2 直角坐标系下的分离变量法 2.1 概述 2.2 分离变量法实施过程 2.2.1 两端固定弦的振动问题 2.2.2 矩形域内的各向同性热传导稳态问题 2.2.3 二维矩形城内各向同性热传导非稳态问题 第3 直(斜)角坐标系下的偏微分方程复数分离变量法(复数级数方法) 3.1 概述 3.2 直角坐标下偏微分方程复数级数方法实施过程 3.2.1 各向异性矩形板横向弯曲问题 3.2.2 矩形域各向异性稳态热传导复数级数方法解 3.3 斜角坐标下偏微分方程复数级数方法实施过程 3.3.1 各向异性斜形板横向弯曲问题 3.3.2 各向异性斜形域稳态溫度场解析解 3.4 数学物理实数化原理 3.5 偏微分方程复数级数方法实施要点 第4 贝塞尔函数方法 4.1 贝塞尔方程的导出 4.2 贝塞尔函数的递推公式 4.3 贝塞尔级数展开 4.4 变形贝塞尔函数 4.5 Kelvin函数 4.6 球贝塞尔函数 4.7 变形球贝塞尔函数 第5 圆域各向异性非稳态热传导方程解析——复数柱多式与复数柱函数 5.1 极坐标下的各向异性热传导方程 5.2 各向异性圆域稳态温度场解析 5.3 Zip微分方程,复数柱多式与复数柱函数和非稳态温度场解析解 5.3.1 Zip微分方程,复数柱多式与复数柱函数 5.3.2 给定温度边界条件的实心圆柱非稳态热传导解析解 5.3.3 复数多函数Zip(J)初步分析 5.3.4 计算程序 5.3.5 数值实验 5.3.6 复数柱函数解实数化证明 5.4 复数柱函数展开定理与复数柱多式研究 5.4.1 复数柱函数展开定理证明 5.4.2 Zip(x)多式与贝塞尔函数的关系 5.4.3 Zip(x)多式的微分公式、递推关系式和积分公式 5.5 第二类复数柱多式定义及其递推公式 5.6 第三类复数柱多式定义及其递推公式 5.7 复数柱多函数渐近展开 5.8 其他边界条件下的圆域非稳态热传导问题求解 5.8.1 给定第二类边界条件的实心圆域非稳态热传导解 5.8.2 侧面具有第三类边界条件的各向异性实心柱体热传导非稳态解 …… 第6 各向异性圆柱体稳态热传导方程柱对称问题——复数柱对称函数 第7 三维各向异性圆柱稳态热传导方程——系变形复数柱多式和复数函数 第8 三维各向异性圆柱体非稳态热传导方程——复数柱体函数 第9 表面与环境换热的各向异性圆薄板稳态热传导方程——变形复数球柱多式与变形复数球柱函数 第10 各向异性二维圆薄板非稳态热传导方程——复数球柱多式与复数球柱函数 第11 各向异性圆柱薄壳稳态热传导方程——一般复数柱面函数 第12 各向异性圆柱薄壳非稳态热传导——参数复数柱面多式与参数复数柱面函数13 球坐标各向同性热传导方程——实数幂级数方法和勒让德级数 第14 各向异性球带面稳态温度场方程——复数球多式与复数球面函数 第15 球面与外界换热的各向异性球带面稳态温度场方程——参数复数球多式与参数复数球面函数 第16 各向异性球带面稳态热传导方程——缔合复数球多式与缔合复数球面函数 第17 表面与外界换热的各向异-眭球带面稳态热传导方程——参数缔合复数球多式与复数球面函数 第18 各向异性薄圆锥壳热传导问题解析 第19 与外界换热的各向异性薄圆锥壳稳态热传导方程——变形复数球柱函数应用 第20 各向异性薄圆锥壳非稳态热传导方程——复数球柱函数应用 第21 复数柱函数积分变换 第22 各向异性波动方程解析解 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值