泊松随机变量的分解与求和

本文探讨了泊松随机变量的分解和独立泊松随机变量之和的性质。在第一部分中,证明了在特定条件下,发出1的信号个数为泊松随机变量,参数为λ1。第二部分通过矩母函数证明了两个独立泊松随机变量之和仍服从泊松分布,其均值为两者的和。
摘要由CSDN通过智能技术生成

1.泊松随机变量的分解

假设传感器发出的信号为0-1信号.发出1的概率为p,发出0的概率为 1-p,并且和以前所发的信号独立.现在假设一定时间内发出信号的个数为泊松随机变量,其参数为\lambda, 可以证明在同一段时间内发出1的个数也是泊松随机变量,其参数为p\lambda.

证明:设X 和Y分别为同一时间段内发出的信号1和0的个数,那么Z=X+Y就是这一时间段内发出信号的个数,利用全概率公式,得到

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值