向量空间,相关定义、公理、定理

向量空间

  整理了《线性代数及其应用》David C.Lay一书中第四章向量空间的有关定义、公理,以及从定义和公理出发推导得到的定理。当做一个小字典吧。

1 向量空间与子空间

  向量空间定义:一个向量空间是由一些被称为向量的对象构成的非空集合 V V V,在这个集合上定义了两个运算,称为加法和标量乘法(标量取实数),服从以下公理(或法则),这些公理必须对 V V V中所有向量 u , v , w u,v,w u,v,w及所有标量(或称数) c c c d d d均成立。

  1. u , v u,v u,v之和(表示为 u + v u+v u+v)属于 V V V
  2. u + v = v + u u+v=v+u u+v=v+u
  3. ( u + v ) + w = u + ( v + w ) (u+v)+w=u+(v+w) (u+v)+w=u+(v+w)
  4. V V V中存在一个零向量 0 0 0,使得 u + 0 = 0 u+0=0 u+0=0
  5. V V V中每个向量 u u u,存在 V V V中一个向量 − u -u u,使得 u + ( − u ) = 0 u+(-u)=0 u+(u)=0
  6. u u u与标量 c c c的乘法标量(记为 c u cu cu)属于 V V V
  7. c ( u + v ) = c u + c v c(u+v)=cu+cv c(u+v)=cu+cv
  8. ( c + d ) u = c u + d u (c+d)u=cu+du (c+d)u=cu+du
  9. c ( d u ) = ( c d ) u c(du)=(cd)u c(du)=(cd)u
  10. 1 u = u 1u=u 1u=u

  子空间定义:向量空间 V V V的一个子空间是 V V V的一个满足以下三个性质的子集 H H H

  1. V V V中的零向量在 H H H
  2. H H H对向量加法封闭,即对 H H H中任意向量 u , v u,v u,v,和 u + v u+v u+v仍在 H H H
  3. H H H对标量乘法封闭,即对 H H H中任意向量 u u u和任意标量 c c c,向量 c u cu cu仍在 H H H

  定理1:若 v 1 , ⋯   , v p v_1,\cdots,v_p v1,,vp在向量空间 V V V中,则 s p a n { v 1 , ⋯   , v p } span\{v_1,\cdots,v_p\} span{v1,,vp} V V V的一个子空间。

2 零空间、列空间、线性变换

  矩阵的零空间定义:矩阵 A A A的零空间写成 N u l   A Nul\ A Nul A,是齐次线性方程 A x = 0 Ax=0 Ax=0的全体解的集合。用集合符号表示,即:
N u l   A = { x : x ∈ R n , A x = 0 } Nul\ A=\{x:x\in \Bbb R^n, Ax=0\} Nul A={x:xRn,Ax=0}
  定理2 m ∗ n m*n mn矩阵 A A A的零空间是 R n R^n Rn的一个子空间。等价地, m m m个方程、 n n n个未知数的其次线性方程组 A x = 0 Ax=0 Ax=0的全体解的集合是 R n R^n Rn的一个子空间。

  矩阵的列空间定义 m ∗ n m*n mn矩阵 A A A的列空间(记为 C o l   A Col\ A Col A)是由 A A A的列的所有线性组合组成的集合。若 A = [ a 1 , ⋯   , a n ] A=[a_1,\cdots,a_n] A=[a1,,an],则 C o l   A = S p a n { a 1 , ⋯   , a n } Col\ A=Span\{a_1,\cdots,a_n\} Col A=Span{a1,,an}

  定理3 m ∗ n m*n mn矩阵 A A A的列空间是 R m R^m Rm的一个子空间。

  线性变换定义:由向量空间 V V V映射到向量空间 W W W内的线性变换 T T T是一个规则,它将 V V V中每个向量 x x x映射成 W W W中唯一向量 T ( x ) T(x) T(x),且满足:

  1. T ( u + v ) = T ( u ) + T ( v ) T(u+v)=T(u)+T(v) T(u+v)=T(u)+T(v),对 V V V中所有 u , v u,v u,v都成立
  2. T ( c u ) = c T ( u ) T(cu)=cT(u) T(cu)=cT(u),对 V V V中所有 u u u及所有数 c c c均成立

线性变换 T T T(或零空间)是 V V V中所有满足 T ( u ) = 0 T(u)=0 T(u)=0的向量 u u u的集合( 0 0 0 W W W中的零向量), T T T的值域是 W W W中所有具有形式 T ( x ) T(x) T(x)(任意 x ∈ V x\in V xV)的向量的集合。如果 T T T是由一个矩阵变换得到的,比如对某矩阵 A A A T ( x ) = A x T(x)=Ax T(x)=Ax,则 T T T的核与值域恰好是 A A A的零空间和列空间。

3 线性无关集和基

  定理4:两个或多个向量组成的有编号的向量集合 { v 1 , ⋯   , v p } \{v_1,\cdots,v_p\} {v1,,vp}(如果 v 1 ≠ 0 v_1\ne 0 v1=0)是线性相关的,当且仅当某 v j ( j > 1 ) v_j(j\gt 1) vj(j>1)是其前面向量 v 1 , ⋯   , v j − 1 v_1,\cdots,v_{j-1} v1,,vj1的线性组合。

  基定义:令 H H H是向量空间 V V V的一个子空间, V V V中向量的指标集 B = { b 1 , ⋯   , b p } B=\{b_1,\cdots,b_p\} B={b1,,bp}称为 H H H的一个基,如果:

  1. B B B是一个线性无关集。
  2. B B B生成的子空间与 H H H相同,即 H = S p a n { b 1 , ⋯   , b p } H=Span\{b_1,\cdots,b_p\} H=Span{b1,,bp}

  定理5(生成集定理):令 S = { v 1 , ⋯   , v p } S=\{v_1,\cdots,v_p\} S={v1,,vp} V V V中的向量集, H = S p a n { v 1 , ⋯   , v p } H=Span\{v_1,\cdots,v_p\} H=Span{v1,,vp}

  1. S S S中某一个向量(比如说 v k v_k vk)是 S S S中其余向量的线性组合,则 S S S中去掉 v k v_k vk后形成的集合仍然可以生成 H H H
  2. H ≠ { 0 } H\ne \{0\} H={0},则 S S S的某一子集是 H H H的一个基

  定理6:矩阵 A A A的主元列构成 C o l   A Col\ A Col A的一个基

4 坐标系

  定理7(唯一表示定理):令 B = { b 1 , ⋯   , b p } B=\{b_1,\cdots,b_p\} B={b1,,bp}是向量空间 V V V的一个基,则对 V V V中每个向量 x x x,存在唯一的一组数 c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn使得:
x = c 1 b 1 + ⋯ + c n b n x=c_1b_1+\cdots +c_nb_n x=c1b1++cnbn

  定义,假设 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn} V V V的一个基, x x x V V V中, x x x相对于基 B B B的坐标(或 x x x B B B-坐标)是使得 x = c 1 b 1 + ⋯ + c n b n x=c_1b_1+\cdots +c_nb_n x=c1b1++cnbn的权 c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn
  若 c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn x x x B B B-坐标,则 R n \Bbb R^n Rn中的向量:
[ x ] B = [ c 1 ⋯ c n ] [x]_B=\begin{bmatrix}c_1\\ \cdots \\ c_n\end{bmatrix} [x]B=c1cn
x x x(相对于 B B B)的坐标向量或 x x x B B B-坐标向量,映射 x ↦ [ x ] B x\mapsto[x]_B x[x]B称为(由 B B B确定的)坐标映射。

  定理8:令 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn}是向量空间 V V V的一个基,则坐标映射 x ↦ [ x ] B x\mapsto[x]_B x[x]B是一个由 V V V映射上到 R n \Bbb R^n Rn的一对一的线性变换

5 向量空间的维数

  定理9:若向量空间 V V V具有一组基 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn},则 V V V中任意包含多于 n n n个向量的集合一定线性相关。

  定理10:若向量空间 V V V有一组基含有 n n n个向量,则 V V V的每一组基一定恰好含有 n n n个向量。

  定义:若 V V V由一个有限集生成,则 V V V称为有限维的 V V V的维数写成 d i m   V dim\ V dim V,是 V V V的基中向量的个数,零向量空间 { 0 } \{0\} {0}的维数定义为零,如果 V V V不是由一有限集生成,则 V V V称为无穷维的

  定理11:令 H H H是有限向量空间 V V V的子空间,若有必要的话, H H H中任一一个线性无关集均可以扩充成为 H H H的一个基。 H H H也是有限维的并且:
d i m   H ≤ d i m   V dim\ H\le dim\ V dim Hdim V

  定理12(基定理):令 V V V是一个 p p p维向量空间, p ≥ 1 p\ge 1 p1 V V V中任意含有 p p p个元素的线性无关集必然是 V V V的一个基。任意含有 p p p个元素且生成 V V V的集合自然是 V V V的一个基。

   N u l   A Nul\ A Nul A的维数是方程 A x = 0 Ax=0 Ax=0中自由变量的个数, C o l   A Col\ A Col A的维数是 A A A中主元列的个数。

6 秩

  矩阵行空间定义:若 A A A是一个 m ∗ n m*n mn矩阵, A A A的每一行具有 n n n个元素,即可以视为 R n \Bbb R^n Rn中一个向量,其行向量的所有线性组合的集合称为 A A A的行空间,记为 R o w   A Row\ A Row A,也可以用 C o l   A T Col\ A^T Col AT代替。

  定理13:若两个矩阵 A A A B B B行等价,则它们的行空间相同。若 B B B是阶梯形矩阵,则 B B B的非零行构成 A A A的行空间的一个基同时也是 B B B的行空间的一个基。

  秩定义 A A A的秩即 A A A的列空间的维数。

  定理14(秩定理) m ∗ n m*n mn矩阵 A A A的列空间和行空间的维数相等,这个公共的维数(即 A A A的秩)还等于 A A A的主元位置的个数且满足方程:
r a n k   A + d i m   N u l   A = n rank\ A + dim \ Nul\ A = n rank A+dim Nul A=n

  秩和可逆矩阵定理:令 A A A是一个 n ∗ n n*n nn矩阵,则下列命题中的每一个均等价于 A A A是可逆矩阵:

  • A A A的列构成 R n \Bbb R^n Rn的一个基
  • C o l   A = R n Col\ A = \Bbb R^n Col A=Rn
  • d i m   C o l   A = n dim\ Col\ A=n dim Col A=n
  • r a n k   A = n rank\ A = n rank A=n
  • N u l   A = { 0 } Nul\ A=\{0\} Nul A={0}
  • d i m   N u l   A = 0 dim\ Nul\ A=0 dim Nul A=0

7 基的变换

  定理15:设 B = { b 1 , ⋯   , b n } B=\{b_1,\cdots,b_n\} B={b1,,bn} C = { c 1 , ⋯   , c n } C=\{c_1,\cdots,c_n\} C={c1,,cn}是向量空间 V V V的基,则存在一个 n ∗ n n*n nn矩阵 P C ← B \mathop{P}\limits_{C\leftarrow B} CBP,使得:
[ x ] C = P C ← B [ x ] B [x]_C=\mathop{P}\limits_{C\leftarrow B}[x]_B [x]C=CBP[x]B
P C ← B \mathop{P}\limits_{C\leftarrow B} CBP的列是基 B B B中向量的 C C C-坐标向量,即:
P C ← B = [ [ b 1 ] C [ b 2 ] C ⋯ [ b n ] C ] \mathop{P}\limits_{C\leftarrow B}=\begin{bmatrix}[b_1]_C&[b_2]_C&\cdots &[b_n]_C\end{bmatrix} CBP=[[b1]C[b2]C[bn]C]
P C ← B \mathop{P}\limits_{C\leftarrow B} CBP称为由 B B B C C C的坐标变换矩阵。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值