向量空间的一些基本定义

内积

两个向量 x 1 \bm{x_1} x1 and x 2 \bm{x_2} x2 的内积定义为
⟨ x 1 , x 2 ⟩ = x 1 ⊤ x 2 = ∑ i x 1 [ i ] x 1 [ 2 ] \langle\bm{x_1,x_2}\rangle=\bm{x}_1^\top\bm{x_2} =\sum_i \bm{x_1}[i]\bm{x_1}[2] x1,x2=x1x2=ix1[i]x1[2]

从几何的角度想,向量的内积表征的是一种空间结构,只与两个向量的长度和夹角有关:
⟨ x 1 , x 2 ⟩ = ∥ x 1 ∥ ∗ ∥ x 2 ∥ ∗ cos ⁡ θ \langle\bm{x_1,x_2}\rangle=\|\bm{x_1}\|* \|\bm{x_2}\| * \cos\theta x1,x2=x1x2cosθ

即同时平移或旋转两个向量内积是不变的。这里刚刚好也引出了2-norm的定义
∥ x 1 ∥ = ⟨ x 1 , x 1 ⟩ \|\bm{x_1}\|=\sqrt{\langle\bm{x_1,x_1}\rangle} x1=x1,x1

从几何的角度思考,内积的属性就很简单了,比如说各种线性
∥ x 1 − x 2 ∥ 2 = ⟨ x 1 − x 2 , x 1 − x 2 ⟩ = ⟨ x 1 , x 1 ⟩ + ⟨ x 2 , x 2 ⟩ − 2 ⟨ x 1 , x 2 ⟩ ; \|\bm{x_1-x_2}\|^2=\langle\bm{x_1-x_2,x_1-x_2}\rangle=\langle\bm{x_1,x_1}\rangle+\langle\bm{x_2,x_2}\rangle-2\langle\bm{x_1,x_2}\rangle; x1x22=x1x2,x1x2=x1,x1+x2,x22x1,x2;

比如 ⟨ x 1 , x 1 ⟩ \langle\bm{x_1,x_1}\rangle x1,x1 意味着 x 1 = 0 \bm{x_1=0} x1=0; 再比如两个非零向量 ⟨ x 1 , x 2 ⟩ = 0 \langle\bm{x_1,x_2}\rangle=0 x1,x2=0 意味着两者正交。

Cauchy Schwarz inequality 也很好理解了
⟨ x 1 , x 2 ⟩ ≤ ∥ x 1 ∥ ∥ x 2 ∥ \langle\bm{x_1,x_2}\rangle\leq\|\bm{x_1}\| \|\bm{x_2}\| x1,x2x1x2

Norms

之前我们已经见识到了2-norm即向量的长度,这里我们给出一般norm的定义。

一个函数 f ( x ) : R n → R f(\bm{x}):\mathbb{R}^n\to\mathbb{R} f(x):RnR 是一个 norm if

  1. Positivity: f ( x ) ≥ 0 f(\bm{x})\geq 0 f(x)0 and f ( x ) = 0    ⟺    x = 0 f(\bm{x})= 0 \iff \bm{x}=0 f(x)=0x=0.
  2. Homogeneity: f ( α x ) = ∣ α ∣ f ( x ) f(\alpha\bm{x})=|\alpha|f(\bm{x}) f(αx)=αf(x), ∀ α ∈ R \forall \alpha\in\mathbb{R} αR.
  3. Triangle inequality: f ( x 1 + x 2 ) ≤ f ( x 1 ) + f ( x 2 ) f(\bm{x_1+x_2})\leq f(\bm{x_1})+f(\bm{x_2}) f(x1+x2)f(x1)+f(x2).

一些典型的norm有 (一般 2-norm 下标省略):
1-norm: ∥ x ∥ 1 = ∑ i ∣ x [ i ] ∣ \|\bm{x}\|_1=\sum_i|\bm{x}[i]| x1=ix[i];

2-norm: ∥ x ∥ 2 = ∑ i x [ i ] 2 \|\bm{x}\|_2=\sqrt{\sum_i \bm{x}[i]^2} x2=ix[i]2 ;

inf-norm: ∥ x ∥ ∞ = max ⁡ i ∣ x [ i ] ∣ \|\bm{x}\|_\infty=\max_i |\bm{x}[i]| x=maxix[i];

p p p-norm: ∥ x ∥ p = ( ∑ i ∣ x [ i ] ∣ p ) 1 / p \|\bm{x}\|_p=\left(\sum_i|\bm{x}[i]|^p\right)^{1/p} xp=(ix[i]p)1/p, p ≥ 1 p\geq 1 p1;

Arithmetic Mean-Geometric Mean (AM-GM) Inequality

给定一组非负实数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an, 一定有
a 1 + a 2 + . . . + a n n ≥ a 1 a 2 . . . a n n \frac{a_1+a_2+...+a_n}{n} \geq \sqrt[^n]{a_1a_2...a_n} na1+a2+...+anna1a2...an

二维时AM-GM可以用下图表示,即 AO ≥ \geq GQ.

Reference

  1. http://www.princeton.edu/~aaa/Public/Teaching/ORF523/S17/ORF523_S17_Lec2_gh.pdf
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值