S2、向量空间的定义

1、组

(1)定义:组是有长度的且是有限非负整数的,长度为你的组是按序排列、用逗号隔开并且两端用括号括起来的n个对象(可以为数也可以是更抽象的东西)其形式如下: ( x 1 , … , x n ) (x_1,\dots,x_n) (x1,,xn)
(补充:一般2元组称为有序对,3元组是有序3元组,为避免平凡的情况发生一般我们也把()称为组(即长度为0的组)

(2)坐标: x j ( j = 1 , 2 … , n ) x_j(j=1,2\dots,n) xjj=12,n)为上述组的第 j j j个坐标。

(3) F n F^n Fn: F n = { ( x 1 , … , x n ) ∣ x j ∈ F , j = 1 , 2 , … , n } F^n=\{(x_1,\dots,x_n)|x_j\in F,j=1,2,\dots,n\} Fn={(x1,,xn)xjF,j=1,2,,n}(就是说 F n F^n Fn为n元组组成的集合)

(4)组的加法:由坐标的加法来定义即 ( x 1 , … , x n ) ± ( y 1 , … , y n ) = ( x 1 ± y 1 , … , x n ± y n ) (x_1,\dots,x_n)\pm(y_1,\dots,y_n)=(x_1\pm y_1,\dots,x_n\pm y_n) (x1,,xn)±(y1,,yn)=(x1±y1,,xn±yn)
(其满足交换律):即 u 、 v ∈ F n , u + v = v + u u、v\in F^n,u+v=v+u uvFn,u+v=v+u

(5)标量乘法: a ∈ F , x ∈ F n ( x = ( x 1 , x 2 … , x n ) ) , 则 a ∙ x = ( a x 1 , a x 2 , … , a x n ) a\in F,x\in F^n(x=(x_1,x_2\dots,x_n)),则a\bullet x=(ax_1,ax_2,\dots,ax_n) aF,xFn(x=(x1,x2,xn)),ax=(ax1,ax2,,axn)

2、向量空间

(1)向量:在 R 2 R^2 R2的坐标平面中以原点为起点, ∀ x ∈ R 2 \forall x\in R^2 xR2作为终点的箭头可以初步的认为这便是一个向量。(可以发现向量与组有着十分紧密的联系)

(2)向量加法:我们可以把向量加法认为为一个法则也就是一种对应法则 f : ( R 2 , R 2 ) → R 2 f:(R^2,R^2)\to R^2 f:(R2,R2)R2
在定义一种法则时需要证明其定义的合理性,也可以理解为函数定义时的唯一性即证明 ∀ x 1 , x 2 ∈ F n , 则 f ( x 1 , x 2 ) = x 1 + x 2 , 即 f ( x 1 , x 2 ) 唯 一 \forall x_1,x_2\in F^n,\text{则}f(x_1,x_2)=x_1+x_2,即f(x_1,x_2)唯一 x1,x2Fn,fx1,x2)=x1+x2,fx1,x2)
(向量加法合理性)证明:假设其不唯一即 f ( x 1 , x 2 ) = u 且 f ( x 1 , x 2 ) = v , u 、 v ∈ F n 但 u ≠ v f(x_1,x_2)=u且f(x_1,x_2)=v, u、v\in F^n但u\neq v f(x1,x2)=ufx1,x2)=v,uvFnu=v
由 u ≠ v 得 u − v ≠ 0 , 但 从 其 加 法 的 定 义 来 说 u = x 1 + x 2 , v = x 1 + x 2 由 组 的 加 法 得 , u 、 v 各 分 量 相 等 故 u = v 与 u ≠ v 矛 盾 , 证 毕 ⋇ 由u\neq v得u-v\neq 0,但从其加法的定义来说u=x_1+x_2,v=x_1+x_2由组的加法得,u、v各分量相等故u=v与u\neq v矛盾,证毕\divideontimes u=vuv=0,u=x1+x2,v=x1+x2,uvu=vu=v

(3)向量的数乘(标量乘法):同上将其认作为一种法则 g : ( F , F n ) → F n g:(F,F^n)\to F^n g:(F,Fn)Fn
(向量数乘合理性的证明同上采用组的运算律推出矛盾即证)

(4)向量空间 V V V的定义 V 是 F 上 的 向 量 空 间 且 满 足 下 列 性 质 : V是F上的向量空间且满足下列性质: VF
1、交换性:
∀ u , v ∈ V , 都 有 u + v = v + u \forall u,v\in V,都有u+v=v+u u,vVu+v=v+u(仅针对加法有)
2、结合性:
∀ u , v , ω ∈ F , 都 有 ( u + v ) + ω = u + ( v + ω ) , ( a b ) v = a ( b v ) \forall u,v,\omega\in F,都有(u+v)+\omega=u+(v+\omega),(ab)v=a(bv) u,v,ωF,u+v)+ω=u+(v+ω),(ab)v=a(bv)
3、加法单位元:
∃ 一 个 元 素 0 , s . t . v + 0 = v \exist一个元素0,s.t.v+0=v 0s.t.v+0=v
4、加法逆:
∀ v ∈ V , 都 ∃ ω ∈ V , s . t . v + ω = 0 \forall v\in V,都\exist\omega\in V,s.t.v+\omega=0 vV,ωV,s.t.v+ω=0
5、乘法单位元:
∀ v ∈ V , 都 有 1 v = v \forall v\in V,都有1v=v vV,1v=v
6、分配性质:
对 所 有 a , b ∈ F , u 、 v ∈ V , 都 有 a ( u + v ) = a u + a v , ( a + b ) u = a u + b u 对所有a,b\in F,u、v\in V,都有a(u+v)=au+av,(a+b)u=au+bu a,bF,uvVa(u+v=au+ava+bu=au+bu
(向量空间中的元素称为向量或是点)
(5)是否为向量空间的证明:

  • 指出其所在的数域(即定义中的F为什么)
  • 明确空间中所定义的加法与乘法是否合理并证明
  • 是否满足定义中的6条

一般来说向量空间是一个抽象的概念,其中的元素可以千奇百怪

此系列会持续更新下去的!
如果本文有问题,请在评论区指教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈哈19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值