1、组
(1)定义:组是有长度的且是有限非负整数的,长度为你的组是按序排列、用逗号隔开并且两端用括号括起来的n个对象(可以为数也可以是更抽象的东西)其形式如下:
(
x
1
,
…
,
x
n
)
(x_1,\dots,x_n)
(x1,…,xn)
(补充:一般2元组称为有序对,3元组是有序3元组,为避免平凡的情况发生一般我们也把()称为组(即长度为0的组))
(2)坐标: x j ( j = 1 , 2 … , n ) x_j(j=1,2\dots,n) xj(j=1,2…,n)为上述组的第 j j j个坐标。
(3) F n F^n Fn: F n = { ( x 1 , … , x n ) ∣ x j ∈ F , j = 1 , 2 , … , n } F^n=\{(x_1,\dots,x_n)|x_j\in F,j=1,2,\dots,n\} Fn={(x1,…,xn)∣xj∈F,j=1,2,…,n}(就是说 F n F^n Fn为n元组组成的集合)
(4)组的加法:由坐标的加法来定义即
(
x
1
,
…
,
x
n
)
±
(
y
1
,
…
,
y
n
)
=
(
x
1
±
y
1
,
…
,
x
n
±
y
n
)
(x_1,\dots,x_n)\pm(y_1,\dots,y_n)=(x_1\pm y_1,\dots,x_n\pm y_n)
(x1,…,xn)±(y1,…,yn)=(x1±y1,…,xn±yn)
(其满足交换律):即
u
、
v
∈
F
n
,
u
+
v
=
v
+
u
u、v\in F^n,u+v=v+u
u、v∈Fn,u+v=v+u
(5)标量乘法: a ∈ F , x ∈ F n ( x = ( x 1 , x 2 … , x n ) ) , 则 a ∙ x = ( a x 1 , a x 2 , … , a x n ) a\in F,x\in F^n(x=(x_1,x_2\dots,x_n)),则a\bullet x=(ax_1,ax_2,\dots,ax_n) a∈F,x∈Fn(x=(x1,x2…,xn)),则a∙x=(ax1,ax2,…,axn)
2、向量空间
(1)向量:在 R 2 R^2 R2的坐标平面中以原点为起点, ∀ x ∈ R 2 \forall x\in R^2 ∀x∈R2作为终点的箭头可以初步的认为这便是一个向量。(可以发现向量与组有着十分紧密的联系)
(2)向量加法:我们可以把向量加法认为为一个法则也就是一种对应法则
f
:
(
R
2
,
R
2
)
→
R
2
f:(R^2,R^2)\to R^2
f:(R2,R2)→R2
(在定义一种法则时需要证明其定义的合理性,也可以理解为函数定义时的唯一性即证明
∀
x
1
,
x
2
∈
F
n
,
则
f
(
x
1
,
x
2
)
=
x
1
+
x
2
,
即
f
(
x
1
,
x
2
)
唯
一
\forall x_1,x_2\in F^n,\text{则}f(x_1,x_2)=x_1+x_2,即f(x_1,x_2)唯一
∀x1,x2∈Fn,则f(x1,x2)=x1+x2,即f(x1,x2)唯一)
(向量加法合理性)证明:假设其不唯一即
f
(
x
1
,
x
2
)
=
u
且
f
(
x
1
,
x
2
)
=
v
,
u
、
v
∈
F
n
但
u
≠
v
f(x_1,x_2)=u且f(x_1,x_2)=v, u、v\in F^n但u\neq v
f(x1,x2)=u且f(x1,x2)=v,u、v∈Fn但u=v
由
u
≠
v
得
u
−
v
≠
0
,
但
从
其
加
法
的
定
义
来
说
u
=
x
1
+
x
2
,
v
=
x
1
+
x
2
由
组
的
加
法
得
,
u
、
v
各
分
量
相
等
故
u
=
v
与
u
≠
v
矛
盾
,
证
毕
⋇
由u\neq v得u-v\neq 0,但从其加法的定义来说u=x_1+x_2,v=x_1+x_2由组的加法得,u、v各分量相等故u=v与u\neq v矛盾,证毕\divideontimes
由u=v得u−v=0,但从其加法的定义来说u=x1+x2,v=x1+x2由组的加法得,u、v各分量相等故u=v与u=v矛盾,证毕⋇
(3)向量的数乘(标量乘法):同上将其认作为一种法则
g
:
(
F
,
F
n
)
→
F
n
g:(F,F^n)\to F^n
g:(F,Fn)→Fn
(向量数乘合理性的证明同上采用组的运算律推出矛盾即证)
(4)向量空间
V
V
V的定义:
V
是
F
上
的
向
量
空
间
且
满
足
下
列
性
质
:
V是F上的向量空间且满足下列性质:
V是F上的向量空间且满足下列性质:
1、交换性:
∀
u
,
v
∈
V
,
都
有
u
+
v
=
v
+
u
\forall u,v\in V,都有u+v=v+u
∀u,v∈V,都有u+v=v+u(仅针对加法有)
2、结合性:
∀
u
,
v
,
ω
∈
F
,
都
有
(
u
+
v
)
+
ω
=
u
+
(
v
+
ω
)
,
(
a
b
)
v
=
a
(
b
v
)
\forall u,v,\omega\in F,都有(u+v)+\omega=u+(v+\omega),(ab)v=a(bv)
∀u,v,ω∈F,都有(u+v)+ω=u+(v+ω),(ab)v=a(bv)
3、加法单位元:
∃
一
个
元
素
0
,
s
.
t
.
v
+
0
=
v
\exist一个元素0,s.t.v+0=v
∃一个元素0,s.t.v+0=v
4、加法逆:
∀
v
∈
V
,
都
∃
ω
∈
V
,
s
.
t
.
v
+
ω
=
0
\forall v\in V,都\exist\omega\in V,s.t.v+\omega=0
∀v∈V,都∃ω∈V,s.t.v+ω=0
5、乘法单位元:
∀
v
∈
V
,
都
有
1
v
=
v
\forall v\in V,都有1v=v
∀v∈V,都有1v=v
6、分配性质:
对
所
有
a
,
b
∈
F
,
u
、
v
∈
V
,
都
有
a
(
u
+
v
)
=
a
u
+
a
v
,
(
a
+
b
)
u
=
a
u
+
b
u
对所有a,b\in F,u、v\in V,都有a(u+v)=au+av,(a+b)u=au+bu
对所有a,b∈F,u、v∈V,都有a(u+v)=au+av,(a+b)u=au+bu
(向量空间中的元素称为向量或是点)
(5)是否为向量空间的证明:
- 指出其所在的数域(即定义中的F为什么)
- 明确空间中所定义的加法与乘法是否合理并证明
- 是否满足定义中的6条
一般来说向量空间是一个抽象的概念,其中的元素可以千奇百怪
此系列会持续更新下去的!
如果本文有问题,请在评论区指教。