在综述中纷纷云云一言以蔽之就是各种技术的排列组合和性能优化。但神经网络很让人诟病的是它的“黑匣子”特性,在应用于推荐系统中时我们往往无法理解,即没有有效的可解释性(将下文末简单总结可解释性常用方法和模型)。
比如CF 是很好的个性化推荐主流技术,但它只对用户–项目交互进行建模,不能为推荐提供具体的理由(仅仅是你的朋友喜欢那么你就会喜欢,这样的理由往往太过粗糙)。技术上更是因为在基于embedding的方法后,如Wide&Deep和FM等,虽然有很好的推荐性能,但是它们就像黑匣子一样工作,无法解释embedding后的隐变量究竟是什么,也无法明确说明预测的理由。而基于树的方法,如决策树,只是通过从数据中推断决策规则来进行预测的,而忽视了交互特性,因此它具有在协作性、扩展性的场景效果不佳。于是乎:
Tree-enhanced Embedding Method (树增强嵌入方法,TEM) 结合了基于embedding和基于tree的模型的优点。即先使用一个基于树(GBDT)的模型来学习丰富的显式决策规则(