PINNs解麦克斯韦方程

1 问题介绍

麦克斯韦方程控制着光的传播及其与物质的相互作用。因此,利用计算电磁学模拟求解麦克斯韦方程对理解光与物质相互作用和设计光学元件起着至关重要的作用。对于线性、非磁性、各向同性材料没有电、磁电流密度的方程通常可以写成如下形式:image

2 物理驱动深度学习方法简介

神经网络作为一种强大的信息处理工具在计算机视觉、生物医学、 油气工程领域得到广泛应用, 引发多领域技术变革.。深度学习网络具有非常强的学习能力, 不仅能发现物理规律, 还能求解偏微分方程。近年来,基于深度学习的偏微分方程求解已是研究新热点。内嵌物理知识神经网络(PINN)是一种科学机器在传统数值领域的应用方法,能够用于解决与偏微分方程 (PDE) 相关的各种问题,包括方程求解、参数反演、模型发现、控制与优化等。受PINN启发,可以将物理损失引入代理模型中代替模型的监督损失项,由此提出了物理驱动的神经网络代理模型

3 PINN方法

PINN的主要思想如图1,先构建一个输出结果为 u^\hat{u}\hat{u} 的神经网络,将其作为PDE解的代理模型,将PDE信息作为约束,编码到神经网络损失函数中进行训练。损失函数主要包括4部分:偏微分结构损失(PDE loss),边值条件损失(BC loss)、初值条件损失(IC loss)以及真实数据条件损失(Data loss)。imageimageimageimageimage

4 物理驱动的神经网络代理模型

基于物理驱动的神经网络代理模型。深度学习模型,输入为相对介质常数分布,输出为三维的electric field vector分布。物理驱动深度学习方法具体步骤为

  • 首先,定义求解预上的CNN模型。这里主要采用Unet网络。
  • 定义训练集上的损失函数,这里主要考虑物理损失项,也可以加上数据损失项。物理损失项主要通过麦克斯韦方程所定义,微分算子可由不同阶数的差分格式表示,再利用不同卷积操作快速计算。
  • 利用梯度下降算法,最小化损失函数,训练网络得到不同介质常数分布下的electric field。image

5 结果展示

实验结果如下图所示,通过训练,模型能实现不同形状下的准确预测。imageimage

转自链接:https://www.zhihu.com/question/526095578/answer/2942268990

### 使用PINN实现电磁场分布预测的方法 物理信息神经网络(Physics-Informed Neural Networks, PINNs)是一种结合深度学习和物理规律的建模工具,能够有效决复杂的偏微分方程(PDEs)。对于电磁场分布预测问题,可以利用PINNs通过以下方式实现: #### 1. 定义电磁场的控制方程 电磁场通常由麦克斯韦方程组描述。这些方程包括电场强度 \( \mathbf{E} \) 和磁场强度 \( \mathbf{H} \),以及它们与其他物理量的关系。为了简化问题,可以选择特定条件下的子集方程,例如静态或准静态近似[^1]。 ```python import numpy as np from deepxde import Config, dde def maxwell_pde(x, u): E_x, E_y, H_z = u[:, 0:1], u[:, 1:2], u[:, 2:] # 假设二维空间中的简单情况 div_E = dde.grad.div([E_x, E_y], x) curl_H = dde.grad.curl([np.zeros_like(H_z), H_z]) return [div_E - rho / epsilon_0, curl_H + J] ``` 上述代码片段定义了一个简单的麦克斯韦方程形式,其中涉及散度和旋度运算。具体的形式可以根据实际应用场景调整[^3]。 --- #### 2. 构造PINN架构并嵌入先验知识 PINN的核心在于将物理约束直接编码到损失函数中。这使得即使在有限的数据条件下,模型也能保持较高的准确性。以下是构建PINN的关键步骤: - **输入变量**:选择合适的坐标系表示位置矢量 \( (x, y, z) \) 或其他相关参数。 - **输出变量**:设计网络输出为待求的物理量,如电场 \( \mathbf{E}(x,y,z) \) 和磁场 \( \mathbf{H}(x,y,z) \)。 ```python net = dde.maps.FNN([3] + [50] * 4 + [3], "tanh", "Glorot normal") model = dde.Model(data, net) # 添加物理约束项至损失函数 model.compile("adam", lr=1e-3, loss_weights=[1, 1]) # 权重平衡数据拟合与物理一致性 ``` 此处展示了如何设置一个多层感知机(MLP),并通过`loss_weights`调节数据驱动项和物理约束项之间的权重比例。 --- #### 3. 利用迁移学习提升泛化性能 由于电磁场问题可能具有多尺度或多场景特性,单一模型难以覆盖所有工况。此时可引入迁移学习策略优化PINN的表现: - **特征迁移**:预先在一个相似但更易获取数据的任务上训练基础PINN,再将其提取的知识迁移到当前任务中作为初始化[^2]。 - **模型微调**:采用已有的预训练模型结构,在新场景下重新校正参数以适配局部变化。 - **参数共享**:当多个关联紧密的不同区域共存时,允许部分权值同步更新从而降低冗余计算开销。 这种方法特别适合处理边界条件复杂或者材料属性未知的情况。 --- #### 4. 数据准备与验证流程 尽管PINN依赖于少量高质量观测样本即可工作良好,但仍需精心挑选代表性强的位置点用于监督训练过程。此外还需注意数值稳定性检验环节——比如对比传统FEM/FDM结果确认收敛行为正常与否等问题。 最终得到经过充分调试后的PINN实例便能高效完成指定范围内的电磁波传播模式分析任务了! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhemgLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值