基于C++的UKF代码示例,跟踪三次多项式曲线

参考一

以下是一个基于C++的UKF代码示例,用于跟踪三次多项式曲线:

#include <iostream>
#include <Eigen/Dense>
#include <cmath>

using namespace std;
using namespace Eigen;

//定义状态向量和量测向量的维度
const int n = 3;
const int m = 1;

//定义UKF的参数
const double alpha = 0.1;  // 0 <= alpha <= 1
const double beta = 2.0;
const double kappa = 0.0;

//定义噪声的协方差矩阵
const Matrix<double, n, n> Q = Matrix<double, n, n>::Identity() * 0.1;
const Matrix<double, m, m> R = Matrix<double, m, m>::Identity() * 1.0;

//定义状态向量和量测向量
Vector3d x(0.0, 0.0, 0.0);
Vector3d xp(0.0, 0.0, 0.0);
Vector3d xm(0.0, 0.0, 0.0);
VectorXd z(m);

//定义UKF所需的矩阵和向量
Matrix<double, n, n> P = Matrix<double, n, n>::Identity();
Matrix<double, n, n> PP = Matrix<double, n, n>::Identity();
Matrix<double, n, m> K = Matrix<double, n, m>::Zero();
Matrix<double, 2 * n + 1, n> X = Matrix<double, 2 * n + 1, n>::Zero();
VectorXd Wm(2 * n + 1);
VectorXd Wc(2 * n + 1);

//定义三次多项式曲线
double a0 = 0.0;
double a1 = 1.0;
double a2 = 0.5;
double a3 = -0.1;

//定义状态转移函数
void f(Vector3d& x, const Vector3d& xp)
{
    double dt = 0.1;
    x(0) = xp(0) + xp(1) * dt + 0.5 * xp(2) * dt * dt;
    x(1) = xp(1) + xp(2) * dt;
    x(2) = xp(2);
}

//定义量测函数
void h(const Vector3d& x, double& z)
{
    z = a0 + a1 * x(0) + a2 * pow(x(0), 2) + a3 * pow(x(0), 3);
}

//定义非线性方程的近似线性化
void sigma_points()
{
    Matrix<double, n, n> L = (P + Q).llt().matrixL();
    X.col(0) = x;
    for (int i = 0; i < n; i++)
    {
        X.col(i + 1) = x + sqrt(n + kappa) * L.col(i);
        X.col(i + n + 1) = x - sqrt(n + kappa) * L.col(i);
    }
}

//定义权重向量
void weights()
{
    Wm(0) = kappa / (n + kappa);
    Wc(0) = Wm(0) + (1 - alpha * alpha + beta);
    for (int i = 1; i < 2 * n + 1; i++)
    {
        Wm(i) = 0.5 / (n + kappa);
        Wc(i) = Wm(i);
    }
}

//定义UKF的预测步骤
void predict()
{
    sigma_points();
    for (int i = 0; i < 2 * n + 1; i++)
    {
        f(X.col(i), xm);
        XP.col(i) = xm;
    }
    x = Vector3d::Zero();
    for (int i = 0; i < 2 * n + 1; i++)
    {
        x += Wm(i) * XP.col(i);
    }
    P = Matrix<double, n, n>::Zero();
    for (int i = 0; i < 2 * n + 1; i++)
    {
        P += Wc(i) * (XP.col(i) - x) * (XP.col(i) - x).transpose();
    }
    P += Q;
}

//定义UKF的更新步骤
void update(double z_meas)
{
    for (int i = 0; i < 2 * n + 1; i++)
    {
        h(X.col(i), z(i));
        Z.col(i) = z(i);
    }
    double z_pred = 0.0;
    for (int i = 0; i < 2 * n + 1; i++)
    {
        z_pred += Wm(i) * Z(i);
    }
    K = Matrix<double, n, m>::Zero();
    for (int i = 0; i < 2 * n + 1; i++)
    {
        K += Wc(i) * (XP.col(i) - x) * (Z(i) - z_pred).transpose();
    }
    K *= R.inverse();
    x += K * (z_meas - z_pred);
    P -= K * R * K.transpose();
}

int main()
{
    cout.precision(2);
    cout << fixed;
    weights();
    for (int i = 0; i < 100; i++)
    {
        predict();
        double z_meas = a0 + a1 * x(0) + a2 * pow(x(0), 2) + a3 * pow(x(0), 3) + (rand() / RAND_MAX - 0.5) * 2 * 0.5;
        update(z_meas);
        cout << "x = " << x.transpose() << endl;
    }
    return 0;
}

这是一个简单的示例代码,可以根据需要进行修改和扩展。

参考二

以下是一个基本的UKF跟踪算法用于跟踪三次多项式曲线的CPP代码实现:

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>

using namespace std;
using namespace Eigen;

const int n = 5; // 状态数量
const int m = 3; // 观测量数量
const double dt = 0.1; // 时间间隔

// 系统状态转移函数
VectorXd f(const VectorXd &x) {
    VectorXd x_next(5);
    x_next[0] = x[0] + x[1]*dt + 0.5*x[2]*dt*dt + 0.1667*x[3]*dt*dt*dt;
    x_next[1] = x[1] + x[2]*dt + 0.3333*x[3]*dt*dt;
    x_next[2] = x[2] + x[3]*dt + 0.5*x[4]*dt*dt;
    x_next[3] = x[3] + x[4]*dt;
    x_next[4] = x[4];
    return x_next;
}

// 系统观测函数
VectorXd h(const VectorXd &x) {
    VectorXd z(3);
    z[0] = x[0];
    z[1] = x[1];
    z[2] = x[2];
    return z;
}

int main() {
    // 初始状态和协方差矩阵
    MatrixXd P0(n, n);
    P0.setZero();
    P0.diagonal() << 10, 10, 10, 10, 10;
    VectorXd x0(n);
    x0 << 0, 0, 0, 0, 0;

    // 测量协方差矩阵和观测矩阵
    MatrixXd Q(m, m);
    Q.setIdentity(); // 没有测量噪声
    MatrixXd R(m, m);
    R << 1, 0, 0,
         0, 1, 0,
         0, 0, 1;
    MatrixXd H(m, n);
    H.setZero();
    H.diagonal() << 1, 1, 1;

    // UKF参数
    double alpha = 1;
    double beta = 2;
    double kappa = 0;
    int lambda = alpha*alpha*(n+kappa)-n;

    // 初始化UKF
    VectorXd x(n);
    x = x0;
    MatrixXd P(n, n);
    P = P0;

    // 仿真
    for (double t = 0; t < 10; t += dt) {
        // 预测
        MatrixXd L = (P + lambda*Q).llt().matrixL();
        MatrixXd X(n, 2*n+1);
        X.col(0) = x;
        for (int i = 0; i < n; i++) {
            X.col(i+1) = x + L.col(i);
            X.col(i+1+n) = x - L.col(i);
        }
        VectorXd x_pred(n);
        x_pred.setZero();
        for (int i = 0; i < 2*n+1; i++) {
            x_pred += f(X.col(i));
        }
        x_pred /= 2*n+1;
        MatrixXd P_pred(n, n);
        P_pred.setZero();
        for (int i = 0; i < 2*n+1; i++) {
            VectorXd dx = f(X.col(i)) - x_pred;
            while (dx[3] > M_PI) dx[3] -= 2*M_PI;
            while (dx[3] < -M_PI) dx[3] += 2*M_PI;
            P_pred += dx*dx.transpose();
        }
        P_pred /= 2*n+1;
        P_pred += Q;

        // 更新
        MatrixXd L_pred = (P_pred + lambda*R).llt().matrixL();
        MatrixXd Z(m, 2*n+1);
        for (int i = 0; i < 2*n+1; i++) {
            Z.col(i) = h(X.col(i));
        }
        VectorXd z_pred(m);
        z_pred.setZero();
        for (int i = 0; i < 2*n+1; i++) {
            z_pred += Z.col(i);
        }
        z_pred /= 2*n+1;
        MatrixXd Pzz(m, m);
        Pzz.setZero();
        for (int i = 0; i < 2*n+1; i++) {
            VectorXd dz = Z.col(i) - z_pred;
            Pzz += dz*dz.transpose();
        }
        Pzz /= 2*n+1;
        Pzz += R;
        MatrixXd Pxz(n, m);
        Pxz.setZero();
        for (int i = 0; i < 2*n+1; i++) {
            VectorXd dx = X.col(i) - x_pred;
            VectorXd dz = Z.col(i) - z_pred;
            Pxz += dx*dz.transpose();
        }
        Pxz /= 2*n+1;
        MatrixXd K(n, m);
        K = Pxz*Pzz.inverse();
        x = x_pred + K*(VectorXd(3) << sin(t), cos(t), t).finished() - z_pred;
        P = P_pred - K*Pzz*K.transpose();

        // 打印结果
        cout << x.transpose() << endl;
    }

    return 0;
}

注意,该代码假设没有测量噪声,并且使用了固定的观测矩阵。如果您需要考虑测量噪声,并且使用不同的观测矩阵,那么您需要相应地修改代码。

参考三

以下是一个简单的UKF跟踪算法跟踪三次多项式曲线的CPP代码示例:

#include <iostream>
#include <math.h>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

// 定义状态向量
typedef Matrix<double, 4, 1> stateVec;

// 定义测量向量
typedef Matrix<double, 2, 1> measVec;

// 定义噪声向量
typedef Matrix<double, 2, 1> noiseVec;

// 定义系统噪声协方差矩阵
const Matrix2d Q = 0.01 * Matrix2d::Identity();

// 定义测量噪声协方差矩阵
const Matrix2d R = 0.1 * Matrix2d::Identity();

// 定义状态转移函数
stateVec f(const stateVec& x, double dt) {
  stateVec xNew;
  xNew << x(0) + x(1) * dt + 0.5 * x(2) * pow(dt, 2) + (1.0 / 6.0) * x(3) * pow(dt, 3),
          x(1) + x(2) * dt + 0.5 * x(3) * pow(dt, 2),
          x(2) + x(3) * dt,
          x(3);
  return xNew;
}

// 定义测量函数
measVec h(const stateVec& x) {
  measVec z;
  z << x(0), x(2);
  return z;
}

// 定义卡尔曼增益
Matrix<double, 4, 2> K(const Matrix<double, 4, 4>& P, const Matrix<double, 2, 4>& H) {
  Matrix<double, 2, 2> S = H * P * H.transpose() + R;
  Matrix<double, 4, 2> K = P * H.transpose() * S.inverse();
  return K;
}

// 定义UKF单步迭代函数
void ukfStep(stateVec& x, Matrix<double, 4, 4>& P, double dt, const measVec& z, const noiseVec& v) {
  // 参数设置
  int n = 4;  // 状态向量维数
  int k = 2 * n + 1;  // 采样点个数
  double alpha = 0.001;  // Sigma点分布参数
  double beta = 2;  // 确信度参数
  double kappa = 0;  // 权重参数

  // Sigma点计算
  Matrix<double, 4, 4> L = P.llt().matrixL();  // Cholesky分解
  Matrix<double, 4, 4> M = sqrt(n + lambda) * L;  // 公式(13)
  Matrix<double, 4, 1> xk;
  Matrix<double, 4, k> X;
  Matrix<double, 2, k> Y;
  xk = x;
  X.col(0) = xk;
  for(int i = 0; i < n; i++) {
    X.col(i+1) = xk + M.col(i);
    X.col(i+1+n) = xk - M.col(i);
  }

  // 权重计算
  double lambda = pow(alpha, 2) * (n + kappa) - n;
  double Wc0 = lambda/(n + lambda) + (1 - pow(alpha, 2) + beta);
  double Wc = 0.5/(n + lambda);
  double Wm0 = lambda/(n + lambda);
  double Wm = 0.5/(n + lambda);

  // 预测步骤
  Matrix<double, 4, 1> xp = Matrix<double, 4, 1>::Zero();
  for(int i = 0; i < k; i++) {
    xp += Wm * f(X.col(i), dt);
  }
  Matrix<double, 4, 4> Pp = Q;
  for(int i = 0; i < k; i++) {
    Matrix<double, 4, 1> temp = f(X.col(i), dt) - xp;
    Pp += Wc * temp * temp.transpose();
  }

  // 更新步骤
  Matrix<double, 2, 4> H = Matrix<double, 2, 4>::Zero();
  H(0,0) = 1;
  H(1,2) = 1;
  Matrix<double, 2, 1> yp = Matrix<double, 2, 1>::Zero();
  for(int i = 0; i < k; i++) {
    yp += Wm * h(X.col(i));
  }
  Matrix<double, 2, 2> Sp = R;
  for(int i = 0; i < k; i++) {
    Matrix<double, 2, 1> temp = h(X.col(i)) - yp;
    Sp += Wc * temp * temp.transpose();
  }
  Matrix<double, 4, 2> Kp = K(Pp, H);

  x = xp + Kp * (z - yp - H * (xp - xk) - v);
  P = Pp - Kp * H * Pp;
}

int main() {
  // 初始化状态向量和协方差矩阵
  stateVec x;
  x << 0, 1, 0, 0;
  Matrix<double, 4, 4> P = Matrix<double, 4, 4>::Zero();
  P(0,0) = 1;
  P(1,1) = 1;
  P(2,2) = 1;
  P(3,3) = 1;

  // 模拟测量数据
  double dt = 0.1;
  measVec z;
  noiseVec v;
  for(int i = 0; i < 100; i++) {
    double t = i * dt;
    z << 0.5 * pow(t, 3), t;
    v = sqrt(R) * Matrix<double, 2, 1>::Random();
    ukfStep(x, P, dt, z, v);
  }

  // 输出结果
  cout << "State vector x = " << x.transpose() << endl;
  cout << "Covariance matrix P = " << P << endl;
  
  return 0;
}

在这个示例中,我们定义了一个四维的状态向量(包括位置、速度和加速度)和一个二维的测量向量(包括位置和加速度),并使用UKF算法对其进行估计。代码中的f函数和h函数分别表示状态转移函数和测量函数,K函数表示卡尔曼增益,ukfStep函数表示UKF单步迭代函数。在主函数中,我们首先初始化状态向量和协方差矩阵,然后模拟测量数据,并调用ukfStep函数对状态向量和协方差矩阵进行更新,最后输出结果。


以下是使用Python实现UKF跟踪三次多项式曲线的示例代码:

import numpy as np
from filterpy.kalman import UnscentedKalmanFilter as UKF

# Define system dynamics
def f(x, dt):
    F = np.array([[1, dt, 0.5*dt**2],
                  [0, 1, dt],
                  [0, 0, 1]])
    return F @ x

# Define measurement function
def h(x):
    H = np.array([[1, 0, 0],
                  [0, 1, 0]])
    return H @ x

# Create UKF instance
ukf = UKF(dim_x=3, dim_z=2, dt=0.1, fx=f, hx=h)

# Set initial state and covariance
x0 = np.array([0, 0, 0])
P0 = np.eye(3) * 10

ukf.x = x0
ukf.P = P0

# Define process and measurement noise
Q = np.diag([0.1, 0.1, 0.1])
R = np.diag([1, 1])

ukf.Q = Q
ukf.R = R

# Generate ground truth data
t = np.arange(0, 10, ukf.dt)
x_gt = np.array([3*t**3-2*t**2, 9*t**2-4*t, 6*t+10])

# Generate noisy measurements
z = h(x_gt) + np.random.normal(size=(2, len(t))) * R.diagonal()

# Run filter
x_est = []
for i, z_i in enumerate(z.T):
    ukf.predict()
    ukf.update(z_i)
    x_est.append(ukf.x)

x_est = np.array(x_est).T

# Plot results
import matplotlib.pyplot as plt

plt.figure()
plt.plot(t, x_gt[0], label='Ground truth')
plt.plot(t, x_est[0], label='Estimate')
plt.legend()
plt.xlabel('Time (s)')
plt.ylabel('Position (m)')
plt.title('Position estimate')

plt.figure()
plt.plot(t, x_gt[1], label='Ground truth')
plt.plot(t, x_est[1], label='Estimate')
plt.legend()
plt.xlabel('Time (s)')
plt.ylabel('Velocity (m/s)')
plt.title('Velocity estimate')

plt.show()

其中,系统动态由f函数定义,测量函数由h函数定义。在本例中,系统动态为三次多项式曲线,测量为轨迹上的位置和速度。过程噪声Q和测量噪声R由对角矩阵表示。程序生成了一个包含系统真实状态和测量值的仿真数据集,并通过UKF估计真实状态。最后,程序绘制了估计结果的时间演化。

ukf跟踪车道线

以下是一个简单的基于UKF的车道线跟踪算法的C++完整代码。该算法使用基于测量的模型来估计车道线的位置。

#include <iostream>
#include <vector>
#include <cmath>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>

using namespace std;
using namespace Eigen;

//定义状态向量和测量向量的维度
const int x_dim = 5;
const int z_dim = 2;

//定义UKF的参数
const double alpha = 1e-1;
const double beta = 2.0;
const double kappa = 0.0;

//定义汽车的轮距和轴距
const double L = 2.6;
const double lf = 1.5;
const double lr = L - lf;

//定义测量误差和过程噪声的协方差矩阵
const Matrix<double, z_dim, z_dim> R = Matrix<double, z_dim, z_dim>::Identity() * 0.1;
const Matrix<double, x_dim, x_dim> Q = Matrix<double, x_dim, x_dim>::Identity() * 0.01;

//定义状态向量
struct State {
    double px;
    double py;
    double psi;
    double v;
    double cte;
};

//将状态向量转换为矩阵
Matrix<double, x_dim, 1> state2vec(const State& x) {
    Matrix<double, x_dim, 1> v;
    v << x.px, x.py, x.psi, x.v, x.cte;
    return v;
}

//将矩阵转换为状态向量
State vec2state(const Matrix<double, x_dim, 1>& v) {
    State s;
    s.px = v(0);
    s.py = v(1);
    s.psi = v(2);
    s.v = v(3);
    s.cte = v(4);
    return s;
}

//定义车辆模型
State vehicleModel(const State& x, double a, double delta, double dt) {
    State x_next;

    double delta_f = atan2(lr * tan(delta) , lf + lr);
    x_next.px = x.px + x.v * cos(x.psi) * dt;
    x_next.py = x.py + x.v * sin(x.psi) * dt;
    x_next.psi = x.psi + x.v / lr * sin(delta_f) * dt;
    x_next.v = x.v + a * dt;
    x_next.cte = x.cte - (x.v * sin(x.psi) + x.v * delta_f) * dt;

    return x_next;
}

//计算卡尔曼增益
Matrix<double, x_dim, z_dim> kalmanGain(const Matrix<double, x_dim, x_dim>& P,
    const Matrix<double, x_dim, 1>& x, const Matrix<double, z_dim, 1>& z_pred) {
    Matrix<double, z_dim, x_dim> H;
    H << 1, 0, 0, 0, 0,
         0, 1, 0, 0, 0;

    Matrix<double, z_dim, z_dim> S = H * P * H.transpose() + R;
    Matrix<double, x_dim, z_dim> K = P * H.transpose() * S.inverse();
    return K;
}

//计算预测测量值
Matrix<double, z_dim, 1> predictMeasurement(const State& x) {
    Matrix<double, z_dim, 1> z;
    z << x.px, x.cte;
    return z;
}

//计算状态转移矩阵
Matrix<double, x_dim, x_dim> stateTransition(const State& x, double a, double delta, double dt) {
    double delta_f = atan2(lr * tan(delta) , lf + lr);

    Matrix<double, x_dim, x_dim> F;
    F << 1, 0, -x.v * sin(x.psi) * dt, cos(delta_f) * dt, -sin(x.psi) * dt,
         0, 1, x.v * cos(x.psi) * dt, sin(delta_f) * dt, cos(x.psi) * dt,
         0, 0, 1, x.v / lr * cos(delta_f) * dt, x.v * sin(delta_f) / lr * dt,
         0, 0, 0, 1, 0,
         0, 0, -x.v * sin(x.psi) * dt, -sin(delta_f) * dt - x.v * delta_f * cos(delta_f) * dt / (lf + lr), cos(x.psi) * dt;

    return F;
}

int main() {
    //初始化状态向量和协方差矩阵
    State x;
    x.px = 0;
    x.py = 0;
    x.psi = 0;
    x.v = 10;
    x.cte = 0;

    Matrix<double, x_dim, x_dim> P = Matrix<double, x_dim, x_dim>::Identity() * 0.1;

    //初始化UKF参数
    double lambda = alpha * alpha * (x_dim + kappa) - x_dim;
    int n_sigma = 2 * x_dim + 1;
    double weights_0 = lambda / (x_dim + lambda);
    double weights_i = 1.0 / (2.0 * (x_dim + lambda));

    Matrix<double, x_dim, n_sigma> X;
    Matrix<double, z_dim, n_sigma> Z_pred;

    //开始循环处理
    while (true) {
        //生成sigma点
        Matrix<double, x_dim, x_dim> L = (P + lambda * Matrix<double, x_dim, x_dim>::Identity()).llt().matrixL();
        X.col(0) = state2vec(x);
        for (int i = 0; i < x_dim; ++i) {
            X.col(i + 1) = state2vec(x) + sqrt(x_dim + lambda) * L.col(i);
            X.col(i + 1 + x_dim) = state2vec(x) - sqrt(x_dim + lambda) * L.col(i);
        }

        //计算每个sigma点的权重
        Matrix<double, n_sigma, 1> weights;
        weights(0) = weights_0;
        for (int i = 1; i < n_sigma; ++i) {
            weights(i) = weights_i;
        }

        //预测sigma点
        for (int i = 0; i < n_sigma; ++i) {
            State x_pred = vec2state(vehicleModel(vec2state(X.col(i)), 0, 0, 1));
            X.col(i) = state2vec(x_pred);
        }

        //计算预测状态向量和协方差矩阵
        State x_hat;
        Matrix<double, x_dim, x_dim> P_hat;
        x_hat = vec2state(weights(0) * X.col(0));
        for (int i = 1; i < n_sigma; ++i) {
            x_hat = x_hat + vec2state(weights(i) * X.col(i));
        }
        for (int i = 0; i < n_sigma; ++i) {
            Matrix<double, x_dim, 1> delta_x = X.col(i) - state2vec(x_hat);
            P_hat = P_hat + weights(i) * delta_x * delta_x.transpose();
        }
        P_hat = P_hat + Q;

        //计算预测测量值
        for (int i = 0; i < n_sigma; ++i) {
            Z_pred.col(i) = predictMeasurement(vec2state(X.col(i)));
        }

        //计算预测测量向量和协方差矩阵
        Matrix<double, z_dim, 1> z_hat;
        Matrix<double, z_dim, z_dim> S;
        z_hat = weights(0) * Z_pred.col(0);
        for (int i = 1; i < n_sigma; ++i) {
            z_hat = z_hat + weights(i) * Z_pred.col(i);
        }
        for (int i = 0; i < n_sigma; ++i) {
            Matrix<double, z_dim, 1> delta_z = Z_pred.col(i) - z_hat;
            S = S + weights(i) * delta_z * delta_z.transpose();
        }
        S = S + R;

        //计算卡尔曼增益
        Matrix<double, x_dim, z_dim> K = kalmanGain(P_hat, state2vec(x_hat), z_hat);

        //更新状态向量和协方差矩阵
        x = vec2state(state2vec(x_hat) + K * (z_pred - z_hat));
        P = P_hat - K * S * K.transpose();

        //输出结果
        cout << "px: " << x.px << ", py: " << x.py << ", psi: " << x.psi << ", v: " << x.v << ", cte: " << x.cte << endl;
    }
    return 0;
}

请注意,这只是一个简单的示例代码。实际的车道线跟踪应该考虑更多的因素,比如曲率半径、车道线宽度等。此外,该算法也存在一些局限性,例如对噪声和不确定性的敏感度比较高,需要进行更加精细的调参。


UKF(Unscented Kalman Filter)是一种非线性滤波算法,可用于跟踪车道线。以下是基于OpenCV的UKF跟踪车道线的完整C++代码示例:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "Eigen/Dense"

using namespace std;
using namespace cv;
using namespace Eigen;

// 定义测量值和状态向量的维度
const int z_dim = 2; // (x, y) 坐标
const int x_dim = 4; // (x, y) 坐标和速度 (vx, vy)

// 定义UKF参数
const double alpha = 0.1; // 控制sigma点的分布
const double beta = 2; // 用于计算协方差矩阵的权重参数
const double kappa = 0; // 控制sigma点的数量

// 定义边界框和ROI的大小
const int box_width = 100;
const int box_height = 50;
const int roi_width = 300;
const int roi_height = 200;

// 定义测量噪声和模型噪声的协方差矩阵
MatrixXd R(z_dim, z_dim); // 测量噪声
MatrixXd Q(x_dim, x_dim); // 模型噪声

// 定义状态向量和测量向量
VectorXd x(x_dim); // 状态向量
VectorXd z(z_dim); // 测量向量

// 定义状态转移函数和测量函数
void f(const VectorXd& x, const VectorXd& u, VectorXd& x_pred);
void h(const VectorXd& x, VectorXd& z_pred);

int main(int argc, char** argv) {
    // 读取视频帧
    VideoCapture cap("lane_detection.mp4");
    if (!cap.isOpened()) {
        cout << "Error opening video stream" << endl;
        return -1;
    }

    // 初始化测量噪声和模型噪声的协方差矩阵
    R << 50, 0,
         0, 50;
    Q << 25, 0, 10, 0,
         0, 25, 0, 10,
         10, 0, 25, 0,
         0, 10, 0, 25;

    // 初始化状态向量
    x << 0, 0, 0, 0;

    while (true) {
        // 读取视频帧
        Mat frame;
        cap >> frame;
        if (frame.empty()) {
            break;
        }

        // 将彩色图像转换为灰度图像
        Mat gray;
        cvtColor(frame, gray, COLOR_BGR2GRAY);

        // 对灰度图像进行高斯模糊
        Mat blur;
        GaussianBlur(gray, blur, Size(5, 5), 0);

        // 对灰度图像进行Canny边缘检测
        Mat edges;
        Canny(blur, edges, 50, 150);

        // 对边缘图像进行霍夫直线变换
        vector<Vec2f> lines;
        HoughLines(edges, lines, 1, CV_PI/180, 100);

        // 将直线转换为车道线
        vector<Vec4i> lanes;
        for (size_t i = 0; i < lines.size(); i++) {
            float rho = lines[i][0];
            float theta = lines[i][1];
            double a = cos(theta), b = sin(theta);
            double x0 = a*rho, y0 = b*rho;
            Point pt1(cvRound(x0 + 1000*(-b)), cvRound(y0 + 1000*(a)));
            Point pt2(cvRound(x0 - 1000*(-b)), cvRound(y0 - 1000*(a)));
            if (abs(pt1.x - pt2.x) > 50) { // 判断是否为水平直线
                lanes.push_back(Vec4i(pt1.x, pt1.y, pt2.x, pt2.y));
            }
        }

        // 对车道线进行曲线拟合
        vector<Point> curve;
        if (!lanes.empty()) {
            Mat mask = Mat::zeros(frame.size(), CV_8U);
            for (size_t i = 0; i < lanes.size(); i++) {
                line(mask, Point(lanes[i][0], lanes[i][1]), Point(lanes[i][2], lanes[i][3]), Scalar(255), 20);
            }
            Rect box(frame.cols/2 - box_width/2, frame.rows - box_height, box_width, box_height);
            Mat roi = mask(box);
            Mat hist;
            reduce(roi, hist, 0, REDUCE_SUM, CV_32S);
            Point max_loc;
            minMaxLoc(hist, nullptr, nullptr, nullptr, &max_loc);
            int x_offset = max_loc.x - roi_width/2;
            Rect roi2(frame.cols/2 - roi_width/2 + x_offset, frame.rows - roi_height, roi_width, roi_height);
            Mat roi2_gray;
            cvtColor(frame(roi2), roi2_gray, COLOR_BGR2GRAY);
            threshold(roi2_gray, roi2_gray, 0, 255, THRESH_BINARY | THRESH_OTSU);
            findNonZero(roi2_gray, curve);
            for (size_t i = 0; i < curve.size(); i++) {
                curve[i].x += roi2.x;
                curve[i].y += roi2.y;
            }
        }

        // 初始化UKF
        int n = x_dim; // 状态向量的维度
        double lambda = alpha*alpha*(n + kappa) - n; // UKF的参数
        int num_sigma = 2*n + 1; // sigma点的数量
        MatrixXd X(n, num_sigma); // sigma点
        VectorXd x_pred(n); // 预测状态向量
        MatrixXd P_pred(n, n); // 预测状态协方差矩阵
        MatrixXd K(n, z_dim); // Kalman增益矩阵
        VectorXd x_post(n); // 更新后的状态向量
        MatrixXd P_post(n, n); // 更新后的状态协方差矩阵
        VectorXd z_pred(z_dim); // 预测测量向量
        MatrixXd S(z_dim, z_dim); // 预测测量协方差矩阵
        MatrixXd Z(z_dim, num_sigma); // 测量sigma点
        VectorXd innovation(z_dim); // 测量不确定性
        double lambda_sum = lambda + n; // UKF的参数和状态向量维度之和
        double alpha_sqrt = sqrt(lambda_sum); // 控制sigma点的分布的参数
        double w_mean = lambda_sum / (2*lambda_sum); // 均值权重
        double w_cov = w_mean + (1 - alpha*alpha + beta); // 协方差权重

        // 从曲线中提取测量向量
        if (!curve.empty()) {
            z << curve[0].x, curve[0].y;
        } else {
            z << 0, 0;
        }

        // 进行UKF预测和更新
        if (curve.empty()) {
            // 如果无法检测到车道线,则将速度设置为零
            x << x(0), x(1), 0, 0;
        } else if (curve.size() == 1) {
            // 如果只检测到一条车道线,则根据该车道线的位置调整状态向量
            x << curve[0].x, curve[0].y, x(2), x(3);
        } else {
            // 如果检测到两条车道线,则使用Kalman滤波器进行跟踪
            // 将检测到的车道线分为左右两个区域
            vector<Point> left_curve;
            vector<Point> right_curve;
            for (size_t i = 0; i < curve.size(); i++) {
                if (curve[i].x <= frame.cols/2) {
                    left_curve.push_back(curve[i]);
                } else {
                    right_curve.push_back(curve[i]);
                }
            }

            // 如果左右区域都包含足够的点,则使用Kalman滤波器进行跟踪
            if (left_curve.size() > 10 && right_curve.size() > 10) {
                // 从左右区域中提取x和y坐标,用于计算测量向量
                vector<double> left_x, left_y, right_x, right_y;
                for (size_t i = 0; i < left_curve.size(); i++) {
                    left_x.push_back(left_curve[i].x);
                    left_y.push_back(left_curve[i].y);
                }
                for (size_t i = 0; i < right_curve.size(); i++) {
                    right_x.push_back(right_curve[i].x);
                    right_y.push_back(right_curve[i].y);
                }
                double left_mean_x = accumulate(left_x.begin(), left_x.end(), 0.0) / left_x.size();
                double left_mean_y = accumulate(left_y.begin(), left_y.end(), 0.0) / left_y.size();
                double right_mean_x = accumulate(right_x.begin(), right_x.end(), 0.0) / right_x.size();
                double right_mean_y = accumulate(right_y.begin(), right_y.end(), 0.0) / right_y.size();
                z << (left_mean_x + right_mean_x) / 2, (left_mean_y + right_mean_y) / 2;

                // 使用UKF进行状态估计
                VectorXd u(x_dim); // 控制向量
                u << 0, 0, 0, 0;
                MatrixXd Wm(num_sigma, 1); // sigma点均值权重
                MatrixXd Wc(num_sigma, 1); // sigma点协方差权重

                // 计算sigma点
                MatrixXd A = alpha_sqrt * P_pred.llt().matrixL();
                X.col(0) = x_pred;
                for (int i = 0; i < n; i++) {
                    X.col(i + 1) = x_pred + A.col(i);
                    X.col(i + 1 + n) = x_pred - A.col(i);
                }

                // 计算均值权重和协方差权重
                Wm.fill(w_mean);
                Wc.fill(w_cov);
                Wc(0) = lambda / lambda_sum;

                // 对每个sigma点进行状态预测
                for (int i = 0; i < num_sigma; i++) {
                    VectorXd x_i(n);
                    f(X.col(i), u, x_i);
                    X.col(i) = x_i;
                }

                // 计算预测状态向量和协方差矩阵
                x_pred.setZero();
                for (int i = 0; i < num_sigma; i++) {
                    x_pred += Wm(i) * X.col(i);
                }
                P_pred.setZero();
                for (int i = 0; i < num_sigma; i++) {
                    VectorXd x_diff = X.col(i) - x_pred;
                    P_pred += Wc(i) * x_diff * x_diff.transpose();
                }
                P_pred += Q;

                // 对每个sigma点进行测量预测
                for (int i = 0; i < num_sigma; i++) {
                    VectorXd z_i(z_dim);
                    h(X.col(i), z_i);
                    Z.col(i) = z_i;
                }

                // 计算预测测量向量和协方差矩阵
                z_pred.setZero();
                for (int i = 0; i < num_sigma; i++) {
                    z_pred += Wm(i) * Z.col(i);
                }
                S.setZero();
                for (int i = 0; i < num_sigma; i++) {
                    VectorXd z_diff = Z.col(i) - z_pred;
                    S += Wc(i) * z_diff * z_diff.transpose();
                }
                S += R;

                // 计算Kalman增益矩阵
                K = P_pred * S.inverse();

                // 计算状态更新
                innovation = z - z_pred;
                x_post = x_pred + K * innovation;
                P_post = P_pred - K * S * K.transpose();
            } else {
                // 如果至少一个区域缺少足够的点,则将速度设置为零
                x << z(0), z(1), 0, 0;
            }
        }

        // 绘制车道线和状态向量
        for (size_t i = 0; i < lanes.size(); i++) {
            line(frame, Point(lanes[i][0], lanes[i][1]), Point(lanes[i][2], lanes[i][3]), Scalar(0, 0, 255), 2);
        }
        for (size_t i = 0; i < curve.size(); i++) {
            circle(frame, curve[i], 5, Scalar(0, 255, 0), -1);
        }
        rectangle(frame, Point(frame.cols/2 - box_width/2, frame.rows - box_height),
            Point(frame.cols/2 + box_width/2, frame.rows), Scalar(255, 0, 0), 2);
        if (curve.empty()) {
            putText(frame, "No lane detected", Point(50, 50), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
        } else {
            line(frame, Point(x(0), x(1)), Point(x_post(0), x_post(1)), Scalar(0, 255, 255), 2);
            circle(frame, Point(x_post(0), x_post(1)), 5, Scalar(0, 255, 255), -1);
            putText(frame, "x: " + to_string(x_post(0)), Point(50, 50), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
            putText(frame, "y: " + to_string(x_post(1)), Point(50, 100), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
        }

        // 显示视频帧
        imshow("Lane detection", frame);
        if (waitKey(30) == 27) {
            break;
        }
    }

    // 释放视频流
    cap.release();
    destroyAllWindows();
    return 0;
}

void f(const VectorXd& x, const VectorXd& u, VectorXd& x_pred) {
    // 状态转移函数
    x_pred(0) = x(0) + x(2);
    x_pred(1) = x(1) + x(3);
    x_pred(2) = x(2);
    x_pred(3) = x(3);
}

void h(const VectorXd& x, VectorXd& z_pred) {
    // 测量函数
    z_pred(0) = x(0);
    z_pred(1) = x(1);
}

注意:这只是一个示例代码,可能无法用于所有情况。您需要根据实际情况对其进行修改和优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ywfwyht

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值