参考一
以下是一个基于C++的UKF代码示例,用于跟踪三次多项式曲线:
#include <iostream>
#include <Eigen/Dense>
#include <cmath>
using namespace std;
using namespace Eigen;
//定义状态向量和量测向量的维度
const int n = 3;
const int m = 1;
//定义UKF的参数
const double alpha = 0.1; // 0 <= alpha <= 1
const double beta = 2.0;
const double kappa = 0.0;
//定义噪声的协方差矩阵
const Matrix<double, n, n> Q = Matrix<double, n, n>::Identity() * 0.1;
const Matrix<double, m, m> R = Matrix<double, m, m>::Identity() * 1.0;
//定义状态向量和量测向量
Vector3d x(0.0, 0.0, 0.0);
Vector3d xp(0.0, 0.0, 0.0);
Vector3d xm(0.0, 0.0, 0.0);
VectorXd z(m);
//定义UKF所需的矩阵和向量
Matrix<double, n, n> P = Matrix<double, n, n>::Identity();
Matrix<double, n, n> PP = Matrix<double, n, n>::Identity();
Matrix<double, n, m> K = Matrix<double, n, m>::Zero();
Matrix<double, 2 * n + 1, n> X = Matrix<double, 2 * n + 1, n>::Zero();
VectorXd Wm(2 * n + 1);
VectorXd Wc(2 * n + 1);
//定义三次多项式曲线
double a0 = 0.0;
double a1 = 1.0;
double a2 = 0.5;
double a3 = -0.1;
//定义状态转移函数
void f(Vector3d& x, const Vector3d& xp)
{
double dt = 0.1;
x(0) = xp(0) + xp(1) * dt + 0.5 * xp(2) * dt * dt;
x(1) = xp(1) + xp(2) * dt;
x(2) = xp(2);
}
//定义量测函数
void h(const Vector3d& x, double& z)
{
z = a0 + a1 * x(0) + a2 * pow(x(0), 2) + a3 * pow(x(0), 3);
}
//定义非线性方程的近似线性化
void sigma_points()
{
Matrix<double, n, n> L = (P + Q).llt().matrixL();
X.col(0) = x;
for (int i = 0; i < n; i++)
{
X.col(i + 1) = x + sqrt(n + kappa) * L.col(i);
X.col(i + n + 1) = x - sqrt(n + kappa) * L.col(i);
}
}
//定义权重向量
void weights()
{
Wm(0) = kappa / (n + kappa);
Wc(0) = Wm(0) + (1 - alpha * alpha + beta);
for (int i = 1; i < 2 * n + 1; i++)
{
Wm(i) = 0.5 / (n + kappa);
Wc(i) = Wm(i);
}
}
//定义UKF的预测步骤
void predict()
{
sigma_points();
for (int i = 0; i < 2 * n + 1; i++)
{
f(X.col(i), xm);
XP.col(i) = xm;
}
x = Vector3d::Zero();
for (int i = 0; i < 2 * n + 1; i++)
{
x += Wm(i) * XP.col(i);
}
P = Matrix<double, n, n>::Zero();
for (int i = 0; i < 2 * n + 1; i++)
{
P += Wc(i) * (XP.col(i) - x) * (XP.col(i) - x).transpose();
}
P += Q;
}
//定义UKF的更新步骤
void update(double z_meas)
{
for (int i = 0; i < 2 * n + 1; i++)
{
h(X.col(i), z(i));
Z.col(i) = z(i);
}
double z_pred = 0.0;
for (int i = 0; i < 2 * n + 1; i++)
{
z_pred += Wm(i) * Z(i);
}
K = Matrix<double, n, m>::Zero();
for (int i = 0; i < 2 * n + 1; i++)
{
K += Wc(i) * (XP.col(i) - x) * (Z(i) - z_pred).transpose();
}
K *= R.inverse();
x += K * (z_meas - z_pred);
P -= K * R * K.transpose();
}
int main()
{
cout.precision(2);
cout << fixed;
weights();
for (int i = 0; i < 100; i++)
{
predict();
double z_meas = a0 + a1 * x(0) + a2 * pow(x(0), 2) + a3 * pow(x(0), 3) + (rand() / RAND_MAX - 0.5) * 2 * 0.5;
update(z_meas);
cout << "x = " << x.transpose() << endl;
}
return 0;
}
这是一个简单的示例代码,可以根据需要进行修改和扩展。
参考二
以下是一个基本的UKF跟踪算法用于跟踪三次多项式曲线的CPP代码实现:
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
using namespace std;
using namespace Eigen;
const int n = 5; // 状态数量
const int m = 3; // 观测量数量
const double dt = 0.1; // 时间间隔
// 系统状态转移函数
VectorXd f(const VectorXd &x) {
VectorXd x_next(5);
x_next[0] = x[0] + x[1]*dt + 0.5*x[2]*dt*dt + 0.1667*x[3]*dt*dt*dt;
x_next[1] = x[1] + x[2]*dt + 0.3333*x[3]*dt*dt;
x_next[2] = x[2] + x[3]*dt + 0.5*x[4]*dt*dt;
x_next[3] = x[3] + x[4]*dt;
x_next[4] = x[4];
return x_next;
}
// 系统观测函数
VectorXd h(const VectorXd &x) {
VectorXd z(3);
z[0] = x[0];
z[1] = x[1];
z[2] = x[2];
return z;
}
int main() {
// 初始状态和协方差矩阵
MatrixXd P0(n, n);
P0.setZero();
P0.diagonal() << 10, 10, 10, 10, 10;
VectorXd x0(n);
x0 << 0, 0, 0, 0, 0;
// 测量协方差矩阵和观测矩阵
MatrixXd Q(m, m);
Q.setIdentity(); // 没有测量噪声
MatrixXd R(m, m);
R << 1, 0, 0,
0, 1, 0,
0, 0, 1;
MatrixXd H(m, n);
H.setZero();
H.diagonal() << 1, 1, 1;
// UKF参数
double alpha = 1;
double beta = 2;
double kappa = 0;
int lambda = alpha*alpha*(n+kappa)-n;
// 初始化UKF
VectorXd x(n);
x = x0;
MatrixXd P(n, n);
P = P0;
// 仿真
for (double t = 0; t < 10; t += dt) {
// 预测
MatrixXd L = (P + lambda*Q).llt().matrixL();
MatrixXd X(n, 2*n+1);
X.col(0) = x;
for (int i = 0; i < n; i++) {
X.col(i+1) = x + L.col(i);
X.col(i+1+n) = x - L.col(i);
}
VectorXd x_pred(n);
x_pred.setZero();
for (int i = 0; i < 2*n+1; i++) {
x_pred += f(X.col(i));
}
x_pred /= 2*n+1;
MatrixXd P_pred(n, n);
P_pred.setZero();
for (int i = 0; i < 2*n+1; i++) {
VectorXd dx = f(X.col(i)) - x_pred;
while (dx[3] > M_PI) dx[3] -= 2*M_PI;
while (dx[3] < -M_PI) dx[3] += 2*M_PI;
P_pred += dx*dx.transpose();
}
P_pred /= 2*n+1;
P_pred += Q;
// 更新
MatrixXd L_pred = (P_pred + lambda*R).llt().matrixL();
MatrixXd Z(m, 2*n+1);
for (int i = 0; i < 2*n+1; i++) {
Z.col(i) = h(X.col(i));
}
VectorXd z_pred(m);
z_pred.setZero();
for (int i = 0; i < 2*n+1; i++) {
z_pred += Z.col(i);
}
z_pred /= 2*n+1;
MatrixXd Pzz(m, m);
Pzz.setZero();
for (int i = 0; i < 2*n+1; i++) {
VectorXd dz = Z.col(i) - z_pred;
Pzz += dz*dz.transpose();
}
Pzz /= 2*n+1;
Pzz += R;
MatrixXd Pxz(n, m);
Pxz.setZero();
for (int i = 0; i < 2*n+1; i++) {
VectorXd dx = X.col(i) - x_pred;
VectorXd dz = Z.col(i) - z_pred;
Pxz += dx*dz.transpose();
}
Pxz /= 2*n+1;
MatrixXd K(n, m);
K = Pxz*Pzz.inverse();
x = x_pred + K*(VectorXd(3) << sin(t), cos(t), t).finished() - z_pred;
P = P_pred - K*Pzz*K.transpose();
// 打印结果
cout << x.transpose() << endl;
}
return 0;
}
注意,该代码假设没有测量噪声,并且使用了固定的观测矩阵。如果您需要考虑测量噪声,并且使用不同的观测矩阵,那么您需要相应地修改代码。
参考三
以下是一个简单的UKF跟踪算法跟踪三次多项式曲线的CPP代码示例:
#include <iostream>
#include <math.h>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
// 定义状态向量
typedef Matrix<double, 4, 1> stateVec;
// 定义测量向量
typedef Matrix<double, 2, 1> measVec;
// 定义噪声向量
typedef Matrix<double, 2, 1> noiseVec;
// 定义系统噪声协方差矩阵
const Matrix2d Q = 0.01 * Matrix2d::Identity();
// 定义测量噪声协方差矩阵
const Matrix2d R = 0.1 * Matrix2d::Identity();
// 定义状态转移函数
stateVec f(const stateVec& x, double dt) {
stateVec xNew;
xNew << x(0) + x(1) * dt + 0.5 * x(2) * pow(dt, 2) + (1.0 / 6.0) * x(3) * pow(dt, 3),
x(1) + x(2) * dt + 0.5 * x(3) * pow(dt, 2),
x(2) + x(3) * dt,
x(3);
return xNew;
}
// 定义测量函数
measVec h(const stateVec& x) {
measVec z;
z << x(0), x(2);
return z;
}
// 定义卡尔曼增益
Matrix<double, 4, 2> K(const Matrix<double, 4, 4>& P, const Matrix<double, 2, 4>& H) {
Matrix<double, 2, 2> S = H * P * H.transpose() + R;
Matrix<double, 4, 2> K = P * H.transpose() * S.inverse();
return K;
}
// 定义UKF单步迭代函数
void ukfStep(stateVec& x, Matrix<double, 4, 4>& P, double dt, const measVec& z, const noiseVec& v) {
// 参数设置
int n = 4; // 状态向量维数
int k = 2 * n + 1; // 采样点个数
double alpha = 0.001; // Sigma点分布参数
double beta = 2; // 确信度参数
double kappa = 0; // 权重参数
// Sigma点计算
Matrix<double, 4, 4> L = P.llt().matrixL(); // Cholesky分解
Matrix<double, 4, 4> M = sqrt(n + lambda) * L; // 公式(13)
Matrix<double, 4, 1> xk;
Matrix<double, 4, k> X;
Matrix<double, 2, k> Y;
xk = x;
X.col(0) = xk;
for(int i = 0; i < n; i++) {
X.col(i+1) = xk + M.col(i);
X.col(i+1+n) = xk - M.col(i);
}
// 权重计算
double lambda = pow(alpha, 2) * (n + kappa) - n;
double Wc0 = lambda/(n + lambda) + (1 - pow(alpha, 2) + beta);
double Wc = 0.5/(n + lambda);
double Wm0 = lambda/(n + lambda);
double Wm = 0.5/(n + lambda);
// 预测步骤
Matrix<double, 4, 1> xp = Matrix<double, 4, 1>::Zero();
for(int i = 0; i < k; i++) {
xp += Wm * f(X.col(i), dt);
}
Matrix<double, 4, 4> Pp = Q;
for(int i = 0; i < k; i++) {
Matrix<double, 4, 1> temp = f(X.col(i), dt) - xp;
Pp += Wc * temp * temp.transpose();
}
// 更新步骤
Matrix<double, 2, 4> H = Matrix<double, 2, 4>::Zero();
H(0,0) = 1;
H(1,2) = 1;
Matrix<double, 2, 1> yp = Matrix<double, 2, 1>::Zero();
for(int i = 0; i < k; i++) {
yp += Wm * h(X.col(i));
}
Matrix<double, 2, 2> Sp = R;
for(int i = 0; i < k; i++) {
Matrix<double, 2, 1> temp = h(X.col(i)) - yp;
Sp += Wc * temp * temp.transpose();
}
Matrix<double, 4, 2> Kp = K(Pp, H);
x = xp + Kp * (z - yp - H * (xp - xk) - v);
P = Pp - Kp * H * Pp;
}
int main() {
// 初始化状态向量和协方差矩阵
stateVec x;
x << 0, 1, 0, 0;
Matrix<double, 4, 4> P = Matrix<double, 4, 4>::Zero();
P(0,0) = 1;
P(1,1) = 1;
P(2,2) = 1;
P(3,3) = 1;
// 模拟测量数据
double dt = 0.1;
measVec z;
noiseVec v;
for(int i = 0; i < 100; i++) {
double t = i * dt;
z << 0.5 * pow(t, 3), t;
v = sqrt(R) * Matrix<double, 2, 1>::Random();
ukfStep(x, P, dt, z, v);
}
// 输出结果
cout << "State vector x = " << x.transpose() << endl;
cout << "Covariance matrix P = " << P << endl;
return 0;
}
在这个示例中,我们定义了一个四维的状态向量(包括位置、速度和加速度)和一个二维的测量向量(包括位置和加速度),并使用UKF算法对其进行估计。代码中的f函数和h函数分别表示状态转移函数和测量函数,K函数表示卡尔曼增益,ukfStep函数表示UKF单步迭代函数。在主函数中,我们首先初始化状态向量和协方差矩阵,然后模拟测量数据,并调用ukfStep函数对状态向量和协方差矩阵进行更新,最后输出结果。
以下是使用Python实现UKF跟踪三次多项式曲线的示例代码:
import numpy as np
from filterpy.kalman import UnscentedKalmanFilter as UKF
# Define system dynamics
def f(x, dt):
F = np.array([[1, dt, 0.5*dt**2],
[0, 1, dt],
[0, 0, 1]])
return F @ x
# Define measurement function
def h(x):
H = np.array([[1, 0, 0],
[0, 1, 0]])
return H @ x
# Create UKF instance
ukf = UKF(dim_x=3, dim_z=2, dt=0.1, fx=f, hx=h)
# Set initial state and covariance
x0 = np.array([0, 0, 0])
P0 = np.eye(3) * 10
ukf.x = x0
ukf.P = P0
# Define process and measurement noise
Q = np.diag([0.1, 0.1, 0.1])
R = np.diag([1, 1])
ukf.Q = Q
ukf.R = R
# Generate ground truth data
t = np.arange(0, 10, ukf.dt)
x_gt = np.array([3*t**3-2*t**2, 9*t**2-4*t, 6*t+10])
# Generate noisy measurements
z = h(x_gt) + np.random.normal(size=(2, len(t))) * R.diagonal()
# Run filter
x_est = []
for i, z_i in enumerate(z.T):
ukf.predict()
ukf.update(z_i)
x_est.append(ukf.x)
x_est = np.array(x_est).T
# Plot results
import matplotlib.pyplot as plt
plt.figure()
plt.plot(t, x_gt[0], label='Ground truth')
plt.plot(t, x_est[0], label='Estimate')
plt.legend()
plt.xlabel('Time (s)')
plt.ylabel('Position (m)')
plt.title('Position estimate')
plt.figure()
plt.plot(t, x_gt[1], label='Ground truth')
plt.plot(t, x_est[1], label='Estimate')
plt.legend()
plt.xlabel('Time (s)')
plt.ylabel('Velocity (m/s)')
plt.title('Velocity estimate')
plt.show()
其中,系统动态由f
函数定义,测量函数由h
函数定义。在本例中,系统动态为三次多项式曲线,测量为轨迹上的位置和速度。过程噪声Q
和测量噪声R
由对角矩阵表示。程序生成了一个包含系统真实状态和测量值的仿真数据集,并通过UKF估计真实状态。最后,程序绘制了估计结果的时间演化。
ukf跟踪车道线
以下是一个简单的基于UKF的车道线跟踪算法的C++完整代码。该算法使用基于测量的模型来估计车道线的位置。
#include <iostream>
#include <vector>
#include <cmath>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
using namespace std;
using namespace Eigen;
//定义状态向量和测量向量的维度
const int x_dim = 5;
const int z_dim = 2;
//定义UKF的参数
const double alpha = 1e-1;
const double beta = 2.0;
const double kappa = 0.0;
//定义汽车的轮距和轴距
const double L = 2.6;
const double lf = 1.5;
const double lr = L - lf;
//定义测量误差和过程噪声的协方差矩阵
const Matrix<double, z_dim, z_dim> R = Matrix<double, z_dim, z_dim>::Identity() * 0.1;
const Matrix<double, x_dim, x_dim> Q = Matrix<double, x_dim, x_dim>::Identity() * 0.01;
//定义状态向量
struct State {
double px;
double py;
double psi;
double v;
double cte;
};
//将状态向量转换为矩阵
Matrix<double, x_dim, 1> state2vec(const State& x) {
Matrix<double, x_dim, 1> v;
v << x.px, x.py, x.psi, x.v, x.cte;
return v;
}
//将矩阵转换为状态向量
State vec2state(const Matrix<double, x_dim, 1>& v) {
State s;
s.px = v(0);
s.py = v(1);
s.psi = v(2);
s.v = v(3);
s.cte = v(4);
return s;
}
//定义车辆模型
State vehicleModel(const State& x, double a, double delta, double dt) {
State x_next;
double delta_f = atan2(lr * tan(delta) , lf + lr);
x_next.px = x.px + x.v * cos(x.psi) * dt;
x_next.py = x.py + x.v * sin(x.psi) * dt;
x_next.psi = x.psi + x.v / lr * sin(delta_f) * dt;
x_next.v = x.v + a * dt;
x_next.cte = x.cte - (x.v * sin(x.psi) + x.v * delta_f) * dt;
return x_next;
}
//计算卡尔曼增益
Matrix<double, x_dim, z_dim> kalmanGain(const Matrix<double, x_dim, x_dim>& P,
const Matrix<double, x_dim, 1>& x, const Matrix<double, z_dim, 1>& z_pred) {
Matrix<double, z_dim, x_dim> H;
H << 1, 0, 0, 0, 0,
0, 1, 0, 0, 0;
Matrix<double, z_dim, z_dim> S = H * P * H.transpose() + R;
Matrix<double, x_dim, z_dim> K = P * H.transpose() * S.inverse();
return K;
}
//计算预测测量值
Matrix<double, z_dim, 1> predictMeasurement(const State& x) {
Matrix<double, z_dim, 1> z;
z << x.px, x.cte;
return z;
}
//计算状态转移矩阵
Matrix<double, x_dim, x_dim> stateTransition(const State& x, double a, double delta, double dt) {
double delta_f = atan2(lr * tan(delta) , lf + lr);
Matrix<double, x_dim, x_dim> F;
F << 1, 0, -x.v * sin(x.psi) * dt, cos(delta_f) * dt, -sin(x.psi) * dt,
0, 1, x.v * cos(x.psi) * dt, sin(delta_f) * dt, cos(x.psi) * dt,
0, 0, 1, x.v / lr * cos(delta_f) * dt, x.v * sin(delta_f) / lr * dt,
0, 0, 0, 1, 0,
0, 0, -x.v * sin(x.psi) * dt, -sin(delta_f) * dt - x.v * delta_f * cos(delta_f) * dt / (lf + lr), cos(x.psi) * dt;
return F;
}
int main() {
//初始化状态向量和协方差矩阵
State x;
x.px = 0;
x.py = 0;
x.psi = 0;
x.v = 10;
x.cte = 0;
Matrix<double, x_dim, x_dim> P = Matrix<double, x_dim, x_dim>::Identity() * 0.1;
//初始化UKF参数
double lambda = alpha * alpha * (x_dim + kappa) - x_dim;
int n_sigma = 2 * x_dim + 1;
double weights_0 = lambda / (x_dim + lambda);
double weights_i = 1.0 / (2.0 * (x_dim + lambda));
Matrix<double, x_dim, n_sigma> X;
Matrix<double, z_dim, n_sigma> Z_pred;
//开始循环处理
while (true) {
//生成sigma点
Matrix<double, x_dim, x_dim> L = (P + lambda * Matrix<double, x_dim, x_dim>::Identity()).llt().matrixL();
X.col(0) = state2vec(x);
for (int i = 0; i < x_dim; ++i) {
X.col(i + 1) = state2vec(x) + sqrt(x_dim + lambda) * L.col(i);
X.col(i + 1 + x_dim) = state2vec(x) - sqrt(x_dim + lambda) * L.col(i);
}
//计算每个sigma点的权重
Matrix<double, n_sigma, 1> weights;
weights(0) = weights_0;
for (int i = 1; i < n_sigma; ++i) {
weights(i) = weights_i;
}
//预测sigma点
for (int i = 0; i < n_sigma; ++i) {
State x_pred = vec2state(vehicleModel(vec2state(X.col(i)), 0, 0, 1));
X.col(i) = state2vec(x_pred);
}
//计算预测状态向量和协方差矩阵
State x_hat;
Matrix<double, x_dim, x_dim> P_hat;
x_hat = vec2state(weights(0) * X.col(0));
for (int i = 1; i < n_sigma; ++i) {
x_hat = x_hat + vec2state(weights(i) * X.col(i));
}
for (int i = 0; i < n_sigma; ++i) {
Matrix<double, x_dim, 1> delta_x = X.col(i) - state2vec(x_hat);
P_hat = P_hat + weights(i) * delta_x * delta_x.transpose();
}
P_hat = P_hat + Q;
//计算预测测量值
for (int i = 0; i < n_sigma; ++i) {
Z_pred.col(i) = predictMeasurement(vec2state(X.col(i)));
}
//计算预测测量向量和协方差矩阵
Matrix<double, z_dim, 1> z_hat;
Matrix<double, z_dim, z_dim> S;
z_hat = weights(0) * Z_pred.col(0);
for (int i = 1; i < n_sigma; ++i) {
z_hat = z_hat + weights(i) * Z_pred.col(i);
}
for (int i = 0; i < n_sigma; ++i) {
Matrix<double, z_dim, 1> delta_z = Z_pred.col(i) - z_hat;
S = S + weights(i) * delta_z * delta_z.transpose();
}
S = S + R;
//计算卡尔曼增益
Matrix<double, x_dim, z_dim> K = kalmanGain(P_hat, state2vec(x_hat), z_hat);
//更新状态向量和协方差矩阵
x = vec2state(state2vec(x_hat) + K * (z_pred - z_hat));
P = P_hat - K * S * K.transpose();
//输出结果
cout << "px: " << x.px << ", py: " << x.py << ", psi: " << x.psi << ", v: " << x.v << ", cte: " << x.cte << endl;
}
return 0;
}
请注意,这只是一个简单的示例代码。实际的车道线跟踪应该考虑更多的因素,比如曲率半径、车道线宽度等。此外,该算法也存在一些局限性,例如对噪声和不确定性的敏感度比较高,需要进行更加精细的调参。
UKF(Unscented Kalman Filter)是一种非线性滤波算法,可用于跟踪车道线。以下是基于OpenCV的UKF跟踪车道线的完整C++代码示例:
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include "Eigen/Dense"
using namespace std;
using namespace cv;
using namespace Eigen;
// 定义测量值和状态向量的维度
const int z_dim = 2; // (x, y) 坐标
const int x_dim = 4; // (x, y) 坐标和速度 (vx, vy)
// 定义UKF参数
const double alpha = 0.1; // 控制sigma点的分布
const double beta = 2; // 用于计算协方差矩阵的权重参数
const double kappa = 0; // 控制sigma点的数量
// 定义边界框和ROI的大小
const int box_width = 100;
const int box_height = 50;
const int roi_width = 300;
const int roi_height = 200;
// 定义测量噪声和模型噪声的协方差矩阵
MatrixXd R(z_dim, z_dim); // 测量噪声
MatrixXd Q(x_dim, x_dim); // 模型噪声
// 定义状态向量和测量向量
VectorXd x(x_dim); // 状态向量
VectorXd z(z_dim); // 测量向量
// 定义状态转移函数和测量函数
void f(const VectorXd& x, const VectorXd& u, VectorXd& x_pred);
void h(const VectorXd& x, VectorXd& z_pred);
int main(int argc, char** argv) {
// 读取视频帧
VideoCapture cap("lane_detection.mp4");
if (!cap.isOpened()) {
cout << "Error opening video stream" << endl;
return -1;
}
// 初始化测量噪声和模型噪声的协方差矩阵
R << 50, 0,
0, 50;
Q << 25, 0, 10, 0,
0, 25, 0, 10,
10, 0, 25, 0,
0, 10, 0, 25;
// 初始化状态向量
x << 0, 0, 0, 0;
while (true) {
// 读取视频帧
Mat frame;
cap >> frame;
if (frame.empty()) {
break;
}
// 将彩色图像转换为灰度图像
Mat gray;
cvtColor(frame, gray, COLOR_BGR2GRAY);
// 对灰度图像进行高斯模糊
Mat blur;
GaussianBlur(gray, blur, Size(5, 5), 0);
// 对灰度图像进行Canny边缘检测
Mat edges;
Canny(blur, edges, 50, 150);
// 对边缘图像进行霍夫直线变换
vector<Vec2f> lines;
HoughLines(edges, lines, 1, CV_PI/180, 100);
// 将直线转换为车道线
vector<Vec4i> lanes;
for (size_t i = 0; i < lines.size(); i++) {
float rho = lines[i][0];
float theta = lines[i][1];
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
Point pt1(cvRound(x0 + 1000*(-b)), cvRound(y0 + 1000*(a)));
Point pt2(cvRound(x0 - 1000*(-b)), cvRound(y0 - 1000*(a)));
if (abs(pt1.x - pt2.x) > 50) { // 判断是否为水平直线
lanes.push_back(Vec4i(pt1.x, pt1.y, pt2.x, pt2.y));
}
}
// 对车道线进行曲线拟合
vector<Point> curve;
if (!lanes.empty()) {
Mat mask = Mat::zeros(frame.size(), CV_8U);
for (size_t i = 0; i < lanes.size(); i++) {
line(mask, Point(lanes[i][0], lanes[i][1]), Point(lanes[i][2], lanes[i][3]), Scalar(255), 20);
}
Rect box(frame.cols/2 - box_width/2, frame.rows - box_height, box_width, box_height);
Mat roi = mask(box);
Mat hist;
reduce(roi, hist, 0, REDUCE_SUM, CV_32S);
Point max_loc;
minMaxLoc(hist, nullptr, nullptr, nullptr, &max_loc);
int x_offset = max_loc.x - roi_width/2;
Rect roi2(frame.cols/2 - roi_width/2 + x_offset, frame.rows - roi_height, roi_width, roi_height);
Mat roi2_gray;
cvtColor(frame(roi2), roi2_gray, COLOR_BGR2GRAY);
threshold(roi2_gray, roi2_gray, 0, 255, THRESH_BINARY | THRESH_OTSU);
findNonZero(roi2_gray, curve);
for (size_t i = 0; i < curve.size(); i++) {
curve[i].x += roi2.x;
curve[i].y += roi2.y;
}
}
// 初始化UKF
int n = x_dim; // 状态向量的维度
double lambda = alpha*alpha*(n + kappa) - n; // UKF的参数
int num_sigma = 2*n + 1; // sigma点的数量
MatrixXd X(n, num_sigma); // sigma点
VectorXd x_pred(n); // 预测状态向量
MatrixXd P_pred(n, n); // 预测状态协方差矩阵
MatrixXd K(n, z_dim); // Kalman增益矩阵
VectorXd x_post(n); // 更新后的状态向量
MatrixXd P_post(n, n); // 更新后的状态协方差矩阵
VectorXd z_pred(z_dim); // 预测测量向量
MatrixXd S(z_dim, z_dim); // 预测测量协方差矩阵
MatrixXd Z(z_dim, num_sigma); // 测量sigma点
VectorXd innovation(z_dim); // 测量不确定性
double lambda_sum = lambda + n; // UKF的参数和状态向量维度之和
double alpha_sqrt = sqrt(lambda_sum); // 控制sigma点的分布的参数
double w_mean = lambda_sum / (2*lambda_sum); // 均值权重
double w_cov = w_mean + (1 - alpha*alpha + beta); // 协方差权重
// 从曲线中提取测量向量
if (!curve.empty()) {
z << curve[0].x, curve[0].y;
} else {
z << 0, 0;
}
// 进行UKF预测和更新
if (curve.empty()) {
// 如果无法检测到车道线,则将速度设置为零
x << x(0), x(1), 0, 0;
} else if (curve.size() == 1) {
// 如果只检测到一条车道线,则根据该车道线的位置调整状态向量
x << curve[0].x, curve[0].y, x(2), x(3);
} else {
// 如果检测到两条车道线,则使用Kalman滤波器进行跟踪
// 将检测到的车道线分为左右两个区域
vector<Point> left_curve;
vector<Point> right_curve;
for (size_t i = 0; i < curve.size(); i++) {
if (curve[i].x <= frame.cols/2) {
left_curve.push_back(curve[i]);
} else {
right_curve.push_back(curve[i]);
}
}
// 如果左右区域都包含足够的点,则使用Kalman滤波器进行跟踪
if (left_curve.size() > 10 && right_curve.size() > 10) {
// 从左右区域中提取x和y坐标,用于计算测量向量
vector<double> left_x, left_y, right_x, right_y;
for (size_t i = 0; i < left_curve.size(); i++) {
left_x.push_back(left_curve[i].x);
left_y.push_back(left_curve[i].y);
}
for (size_t i = 0; i < right_curve.size(); i++) {
right_x.push_back(right_curve[i].x);
right_y.push_back(right_curve[i].y);
}
double left_mean_x = accumulate(left_x.begin(), left_x.end(), 0.0) / left_x.size();
double left_mean_y = accumulate(left_y.begin(), left_y.end(), 0.0) / left_y.size();
double right_mean_x = accumulate(right_x.begin(), right_x.end(), 0.0) / right_x.size();
double right_mean_y = accumulate(right_y.begin(), right_y.end(), 0.0) / right_y.size();
z << (left_mean_x + right_mean_x) / 2, (left_mean_y + right_mean_y) / 2;
// 使用UKF进行状态估计
VectorXd u(x_dim); // 控制向量
u << 0, 0, 0, 0;
MatrixXd Wm(num_sigma, 1); // sigma点均值权重
MatrixXd Wc(num_sigma, 1); // sigma点协方差权重
// 计算sigma点
MatrixXd A = alpha_sqrt * P_pred.llt().matrixL();
X.col(0) = x_pred;
for (int i = 0; i < n; i++) {
X.col(i + 1) = x_pred + A.col(i);
X.col(i + 1 + n) = x_pred - A.col(i);
}
// 计算均值权重和协方差权重
Wm.fill(w_mean);
Wc.fill(w_cov);
Wc(0) = lambda / lambda_sum;
// 对每个sigma点进行状态预测
for (int i = 0; i < num_sigma; i++) {
VectorXd x_i(n);
f(X.col(i), u, x_i);
X.col(i) = x_i;
}
// 计算预测状态向量和协方差矩阵
x_pred.setZero();
for (int i = 0; i < num_sigma; i++) {
x_pred += Wm(i) * X.col(i);
}
P_pred.setZero();
for (int i = 0; i < num_sigma; i++) {
VectorXd x_diff = X.col(i) - x_pred;
P_pred += Wc(i) * x_diff * x_diff.transpose();
}
P_pred += Q;
// 对每个sigma点进行测量预测
for (int i = 0; i < num_sigma; i++) {
VectorXd z_i(z_dim);
h(X.col(i), z_i);
Z.col(i) = z_i;
}
// 计算预测测量向量和协方差矩阵
z_pred.setZero();
for (int i = 0; i < num_sigma; i++) {
z_pred += Wm(i) * Z.col(i);
}
S.setZero();
for (int i = 0; i < num_sigma; i++) {
VectorXd z_diff = Z.col(i) - z_pred;
S += Wc(i) * z_diff * z_diff.transpose();
}
S += R;
// 计算Kalman增益矩阵
K = P_pred * S.inverse();
// 计算状态更新
innovation = z - z_pred;
x_post = x_pred + K * innovation;
P_post = P_pred - K * S * K.transpose();
} else {
// 如果至少一个区域缺少足够的点,则将速度设置为零
x << z(0), z(1), 0, 0;
}
}
// 绘制车道线和状态向量
for (size_t i = 0; i < lanes.size(); i++) {
line(frame, Point(lanes[i][0], lanes[i][1]), Point(lanes[i][2], lanes[i][3]), Scalar(0, 0, 255), 2);
}
for (size_t i = 0; i < curve.size(); i++) {
circle(frame, curve[i], 5, Scalar(0, 255, 0), -1);
}
rectangle(frame, Point(frame.cols/2 - box_width/2, frame.rows - box_height),
Point(frame.cols/2 + box_width/2, frame.rows), Scalar(255, 0, 0), 2);
if (curve.empty()) {
putText(frame, "No lane detected", Point(50, 50), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
} else {
line(frame, Point(x(0), x(1)), Point(x_post(0), x_post(1)), Scalar(0, 255, 255), 2);
circle(frame, Point(x_post(0), x_post(1)), 5, Scalar(0, 255, 255), -1);
putText(frame, "x: " + to_string(x_post(0)), Point(50, 50), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
putText(frame, "y: " + to_string(x_post(1)), Point(50, 100), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
}
// 显示视频帧
imshow("Lane detection", frame);
if (waitKey(30) == 27) {
break;
}
}
// 释放视频流
cap.release();
destroyAllWindows();
return 0;
}
void f(const VectorXd& x, const VectorXd& u, VectorXd& x_pred) {
// 状态转移函数
x_pred(0) = x(0) + x(2);
x_pred(1) = x(1) + x(3);
x_pred(2) = x(2);
x_pred(3) = x(3);
}
void h(const VectorXd& x, VectorXd& z_pred) {
// 测量函数
z_pred(0) = x(0);
z_pred(1) = x(1);
}
注意:这只是一个示例代码,可能无法用于所有情况。您需要根据实际情况对其进行修改和优化。