从 iPhone 人像模式导出深度图(视差图)

Step 1

Important !!!)拍照前进入“设置-相机-格式”,将“相机拍摄”调整为“兼容性最佳”,否则之后拍摄的图无法导出深度图。

Step 2

用人像模式拍照。

Step 3

用数据线连接 iPhone 和电脑,将原始图片数据传到电脑上,一般人像模式拍摄的散景图文件名会带有字母 E,如 IMG_E3214.JPG,相对应的清晰图文件名为 IMG_3214.JPG。两个文件只要能够成功导入一个即可。

Step 4

进入网站 https://www.photopea.com/,将图片拖入页面内或在菜单栏打开图片文件,稍许片刻即可在右侧“图层”一栏观察到 3 张图:原图,深度图(视差图),和亮度图(辐射度图)。

### 如何生成或获取影像深度图 #### 方法概述 生成或获取影像深度图的技术通常涉及计算机视觉和深度学习领域中的多种方法。以下是几种常见的技术路径: 1. **立体视觉(Stereo Vision)** 立体视觉利用两台或多台相机捕捉同一场景的不同视角图像,通过计算像素间的视差来推导深度信息[^1]。这种方法的核心在于匹配左右图像中的对应点,并根据三角测量原理估计距离。 2. **单目深度估计(Monocular Depth Estimation)** 单目深度估计是一种基于单一摄像头输入的深度预测方法。它依赖于深度学习模型,特别是卷积神经网络(CNN),通过对大量标注数据的学习,从二维图像中推测三维空间结构[^3]。例如,Vision Transformer (ViT) 可以应用于此类任务,通过自注意力机制提升特征提取能力。 3. **结构光扫描(Structured Light Scanning)** 结构光技术向目标表面投射已知图案(如条纹或网格),并通过观察图案变形情况反推出物体形状及其对应的深度值。该方法广泛应用于工业检测以及消费级设备(如iPhone Face ID)中[^4]。 4. **飞行时间传感器(Time-of-Flight, ToF Sensors)** 飞行时间传感器直接测量红外光线往返所需的时间来确定每个像素点的距离信息,从而快速构建高分辨率深度地图。ToF技术因其实时性和准确性,在AR/VR头盔、机器人导航等领域得到广泛应用[^2]。 #### 工具与框架支持 为了简化开发流程并加速研究成果落地,许多开源软件包提供了针对上述各类算法的支持: - MATLAB拥有强大的工具箱集合,可以方便地完成从基础图像处理到复杂深度学习建模的任务。 - TensorFlow/Keras 和 PyTorch 是当前最流行的两大深度学习平台,它们内置了大量的预训练模型供开发者调用优化性能的同时也允许定制化修改满足特定需求。 - OpenCV作为经典的计算机视觉库同样包含了部分关于双目视觉及稠密重建的功能模块可供选用. ```python import cv2 from matplotlib import pyplot as plt # 加载图片对 imgL = cv2.imread('left_image.jpg',0) imgR = cv2.imread('right_image.jpg',0) stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15) disparity = stereo.compute(imgL,imgR) plt.imshow(disparity,'gray') plt.show() ``` 此段代码展示了一个简单的使用OpenCV实现基本版块匹配型立体声系统的例子。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值