ICESat2数据hd5文件的预处理

下载PhoREAL

Phoreal(Photon Research and Engineering Synery Sycorage)是一个地理空间分析工具箱,允许用户读取,处理,分析和输出ICESAT-2 ATL03和ATL08数据。
https://download.csdn.net/download/qq_39546299/19271457?spm=1001.2014.3001.5501
在这里插入图片描述

1:

成功执行Phoreal执行后填充数据•文件名(Load) - 此按钮为用户提供了使用Phoreal以前执行的文件的选项。在成功执行Phoreal之后,在可以加载的输出目录中创建一个*_data.pkl文件以便快速分析。

地面轨道 - 显示用于绘制的可用接地轨道
X轴 - 显示可以在X轴上绘制的值
X标签 - 设置绘图的X标签,可以编辑
Y轴 - 显示可以绘制的值Y轴
Y标签 - 为情节设置y标签,这可以是编辑
过滤器 - 允许用户设置如何过滤绘图

2:

在成功执行Phoreal执行后加载(需要ATL08文件)
细分统计数据计算统计数据(选项:时间,纬度,UTM NROVED)
段增量 - 段增量计算统计数据
Compute Stats按钮 - 使用段输入计算统计信息。在执行期间,此按钮灰色。
将统计数据添加到绘图 - 此选项在成功计算统计数据后填充。可以将统计数据添加到绘图或导出到.csv文件
导出按钮 - 将统计信息导出到.csv文件•绘图统计按钮 - 为大多数最近的绘图添加统计数据

3:

成功执行Phoreal后加载,并允许用户将图层添加到最新的绘图中

添加ATL08数据 - 这将ATL08数据添加到最近的绘图(选项:Max Conopy,Terlain最新版本)添加到最新的数据适合,和地形中位于HAE和MSL高度)

添加参考 - 这将参考数据添加到最新的绘图中。这需要参考数据。当X / Y轴参数设置为分类或信号置信度时,无法绘制此数据。注意:为了提供参考数据的时间和增量时间值,必须使用ICESAT-2次通过线性插值来计算这些值。

添加移位数据 - 这将移位的ICESAT-2数据添加到最新的绘图中。这是在XYZ中移位的数据,以最小化相对于参考数据的z误差。将绘制移位数据,以便在icsat-2绘图中设置在x / y轴中的任何参数。

4:

PHOSHOW按钮 - 此按钮调用一个函数来将输出绘图数据排列为HTML格式,并将其呈现在Web浏览器中以进行交互式查看。

如果没有Internet连接,则此函数调用D3(JavaScript绘图包)的本地副本,以帮助将数据渲染到Web浏览器中。如果存在Internet连接,则在常规Web浏览器中呈现此数据,可以使用基础映射。

例:
输入数据界面
转csv结果

### ICESAT2 数据分割方法与处理技术 ICESAT2卫星提供高精度激光测距数据,广泛应用于冰川、森林、海洋等多种环境监测领域。对于ICESAT2数据的分割处理,主要涉及以下几个方面: #### 1. 数据预处理 在进行任何数据分析之前,需要先对原始数据文件进行解码和初步清理工作。ICESAT2数据通常以HDF5格式存储,因此建议使用专门设计来读取这种格式的库来进行操作[^1]。 ```python import h5py def read_icesat_data(file_path): with h5py.File(file_path, 'r') as f: # 获取所需变量并转换为numpy数组或其他适合进一步分析的形式 data = {} for key in ['latitude', 'longitude', 'height']: data[key] = np.array(f['/gt1l/land_ice_segments/' + key]) return data ``` #### 2. 时间序列划分 为了更好地理解不同时间段内的变化情况,可以根据时间戳将整个观测期划分为若干子区间。这有助于识别季节性模式或长期趋势。 #### 3. 地理区域切分 基于地理位置信息(经度纬度坐标),可以按照特定的空间尺度(如国家边界、流域范围等)切割数据集。这种方法特别适用于研究局部区域内特征的变化规律。 #### 4. 波形信号分离 针对每一条轨迹上的回波记录,通过算法提取出代表地面反射特性的部分。这一过程可能涉及到复杂的数学运算和技术手段,比如傅里叶变换或者其他形式的时间频率域分析工具[^3]。 ```python from scipy.signal import find_peaks def waveform_segmentation(waveform): peaks, _ = find_peaks(-waveform, distance=10) peak_heights = [-waveform[p] for p in peaks] if len(peak_heights) >= 2: ground_peak_index = peaks[np.argmax(peak_heights)] surface_waveform = waveform[:ground_peak_index] canopy_waveform = waveform[ground_peak_index:] return { "surface": surface_waveform, "canopy": canopy_waveform } else: raise ValueError("无法找到足够的峰值") ``` 上述代码片段展示了如何利用`scipy`中的函数实现简单的波形分割逻辑。实际应用场景下还需要考虑更多因素,并采用更加精细的方法完成这项任务。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值