【R】如何比较两个回归方程中系数的显著差异?

组间系数差异的检验方法- 引入交叉项(Chow 检验)

构建一个带交互效应的回归,如果交互项不显著,则说明两个回归系数是无显著区别的。
When two slope coefficients are different, a one-unit change in a predictor is associated with different mean changes in the response. In the scatterplot below, it appears that a one-unit increase in Input is associated with a greater increase in Output in Condition B than in Condition A. We can see that the slopes look different, but we want to be sure this difference is statistically significant.
在这里插入图片描述
我们需要确定 Input 的系数是否取决于 Condition。在统计学中,当我们说一个变量的影响取决于另一个变量时,这是一种交互效应。我们需要做的就是包含 Input*Condition 的交互项

#以普通线性回归为例,分别拟合了 fine 和 coarse 的降水和植被指数ndvi 
fit_fine <- lm(NDVI_2018~pre_2018, data = sd2018_fine)
summary(fit_fine)

fit_coarse <- lm(NDVI_2018~pre_2018, data = sd2018_coarse)
summary(fit_coarse)
#比较交互效应,在回归中加入 Sepal.Length*Species 的交互项
fit_all <- lm(NDVI_2018~pre_2018*Soil, data = sd2018_all)
summary(fit_all)

在这里插入图片描述

https://blog.minitab.com/en/adventures-in-statistics-2/how-to-compare-regression-lines-between-different-models
https://www.zhihu.com/question/279103129/answer/2036840516
https://www.stata.com/support/faqs/statistics/computing-chow-statistic/index.html
https://mp.weixin.qq.com/s/CzBfLwubLcSvkmhyPLHZ0A

### starRC、LEF 和 DEF 文件的 EDA 工具使用教程 #### 关于 starRC 的使用说明 starRC 是由 Synopsys 开发的一款用于寄生参数提取 (PEX) 的工具,在 detail routing 完成之后被调用,以提供精确的电阻电容延迟分析数据[^2]。该工具能够处理复杂的多层互连结构并支持多种工艺节点。 对于 starRC 的具体操作指南,通常可以从官方文档获取最权威的信息。访问 Synopsys 官方网站的技术资源页面,可以找到最新的产品手册以及应用笔记等资料。此外,还可以通过在线帮助系统获得交互式的指导和支持服务。 #### LEF 和 DEF 文件格式解析及其在 Cadence 中的应用 LEF(Library Exchange Format)和 DEF(Design Exchange Format)是两种广泛应用于集成电路布局布线阶段的标准文件格式之一[^3]。前者主要用于描述标准单元库中的元件几何形状;后者则记录了整个芯片版图的设计信息,包括但不限于各个模块的位置关系、网络连接情况等重要细节。 当涉及到这些文件类型的编辑或读取时,Cadence 提供了一系列强大的平台级解决方案,比如 Virtuoso Layout Editor 就可以直接打开并修改 LEF/DEF 格式的项目工程。为了更好地理解和运用这两种文件格式,建议参阅 Cadence 发布的相关培训材料或是参加其举办的专项课程学习活动。 ```bash # 示例命令:查看 LEF 或 DEF 文件内容 cat my_design.lef cat my_design.def ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值