Confusion Matrix-混淆矩阵
How in the hell can we measure the effectiveness of our model. Better the effectiveness, better the performance and that’s exactly what we want. And it is where the Confusion matrix comes into the limelight. Confusion Matrix is a performance measurement for machine learning classification.
It is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.
Actual value: True, False
Predicted values: Positive, Negative
What is TP, FP, FN, TN?
-
True Positive:
Interpretation: You predicted positive and it’s true.
You predicted that a woman is pregnant and she actually is. -
True Negative:
Interpretation: You predicted negative and it’s true.
You predicted that a man is not pregnant and he actually is not. -
False Positive: (Type 1 Error)
Interpretation: You predicted positive and it’s false.
You predicted that a man is pregnant but he actually is not. -
False Negative: (Type 2 Error)
Interpretation: You predicted negative and it’s false.
You predicted that a woman is not pregnant but she actually is.
Just Remember, We describe predicted values as Positive and Negative and actual values as True and False.