Confusion Matrix-混淆矩阵

Confusion Matrix-混淆矩阵

How in the hell can we measure the effectiveness of our model. Better the effectiveness, better the performance and that’s exactly what we want. And it is where the Confusion matrix comes into the limelight. Confusion Matrix is a performance measurement for machine learning classification.

It is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.
在这里插入图片描述

Actual value: True, False
Predicted values: Positive, Negative

What is TP, FP, FN, TN?

  • True Positive:
    Interpretation: You predicted positive and it’s true.
    You predicted that a woman is pregnant and she actually is.

  • True Negative:
    Interpretation: You predicted negative and it’s true.
    You predicted that a man is not pregnant and he actually is not.

  • False Positive: (Type 1 Error)
    Interpretation: You predicted positive and it’s false.
    You predicted that a man is pregnant but he actually is not.

  • False Negative: (Type 2 Error)
    Interpretation: You predicted negative and it’s false.
    You predicted that a woman is not pregnant but she actually is.

Just Remember, We describe predicted values as Positive and Negative and actual values as True and False.
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值