混淆矩阵
混淆矩阵(Confision Matrix)是一种N*N表格,用于总结分类模型的预测效果。N表示类别个数,横轴表示实际的标签,纵轴表示模型预测的标签。
Precise(精确率)=TP/(TP+FP)
精确率:指模型正确预测正类的频率。
Recall(召回率)=TP/(TP+FN)
召回率:指模型正确识别实际的正类标签。
F1(调和均值)=2TP/2TP+FP+FN
F1:反映算法性能
准确率
混淆矩阵
混淆矩阵(Confision Matrix)是一种N*N表格,用于总结分类模型的预测效果。N表示类别个数,横轴表示实际的标签,纵轴表示模型预测的标签。
Precise(精确率)=TP/(TP+FP)
精确率:指模型正确预测正类的频率。
Recall(召回率)=TP/(TP+FN)
召回率:指模型正确识别实际的正类标签。
F1(调和均值)=2TP/2TP+FP+FN
F1:反映算法性能
准确率