混淆矩阵(Confusion Matrix)

混淆矩阵是评估分类模型性能的重要工具,它展示了模型预测与真实标签的对比。精确率衡量了模型预测正类的准确性,召回率表示模型识别实际正类的能力。F1分数综合了精确率和召回率,是评价模型性能的一个指标。文章还涵盖了准确率和错误率,并提供相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

混淆矩阵

混淆矩阵(Confision Matrix)是一种N*N表格,用于总结分类模型的预测效果。N表示类别个数,横轴表示实际的标签,纵轴表示模型预测的标签。
在这里插入图片描述

Precise(精确率)=TP/(TP+FP)
精确率:指模型正确预测正类的频率。

在这里插入图片描述

Recall(召回率)=TP/(TP+FN)
召回率:指模型正确识别实际的正类标签。

在这里插入图片描述

F1(调和均值)=2TP/2TP+FP+FN
F1:反映算法性能

在这里插入图片描述

准确率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值