Bayes基本概念

Bayes基本概念

Prior(先验): p ( z ) p(z) p(z) 看到数据前的猜测;
Posterior(后验): p ( z ∣ x ) p(z|x) p(zx) 看到数据后的猜测;
Likelihood(似然): p ( x ∣ z ) p(x|z) p(xz) 也是条件概率,在 z z z假设下数据 x x x的概率;
Evidence(证据): p ( x ) p(x) p(x)即数据本身;
注: x x x 是数据, z z z 是变量

p ( z ∣ x ) = p ( x ∣ z ) ∗ p ( z ) p ( x ) p(z|x)=\frac{p(x|z) * p(z)} {p(x)} p(zx)=p(x)p(xz)p(z)

在这里插入图片描述
根据条件概率:
p ( z ∣ x ) = p ( x , z ) ∫ p ( x , z ) d z = p ( x , z ) p ( x ) p(z|x)=\frac{p(x,z)} {\int p(x,z)dz}=\frac{p(x,z)} {p(x)} p(zx)=p(x,z)dzp(x,z)=p(x)p(x,z)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值