Transmission lines fundamentals

Transmission lines fundamentals

Reference:
Slides of EE4C05, TUD
Pozar D M. Microwave engineering

What is a transmission line

A Tx-line is a two-port network connecting a generator circuit at the sending end to a load at the receiving end.

在这里插入图片描述

在这里插入图片描述

  • Circuit VS Transmission Line

    Circuit: low frequency, wavelength is much larger than the circuit size, approximately same phases at different locations in the circuit

在这里插入图片描述

Transmission line: high frequency, wavelength is much smaller than circuit size, different phases at different locations in the circuit

在这里插入图片描述

Unlike in circuit theory, the length of a transmission line is very important in transmission line analysis

  • EM waves in transmission lines

    Modes: vector functions that represent the distribution of the field in the plane transverse to the direction of propagation

在这里插入图片描述

In bounded problems, boundary conditions lead to field representations
as summation of modes
E ⃗ ( r ⃗ ) = ∑ m V m ( z ) e ⃗ m ( x , y ) , H ⃗ ( r ⃗ ) = ∑ m I m ( z ) h ⃗ m ( x , y ) \vec E(\vec r)=\sum_m V_m(z)\vec e_m(x,y),\qquad \vec H(\vec r)=\sum_m I_m(z)\vec h_m(x,y) E (r )=mVm(z)e m(x,y),H (r )=mIm(z)h m(x,y)
Of all the modes only 1 is typically useful: fundamental mode
E ⃗ ( r ⃗ ) = V ( z ) e ⃗ 0 ( x , y ) , H ⃗ ( r ⃗ ) = I ( z ) h ⃗ 0 ( x , y ) \vec E(\vec r)= V(z)\vec e_0(x,y),\qquad \vec H(\vec r)=I(z)\vec h_0(x,y) E (r )=V(z)e 0(x,y),H (r )=I(z)h 0(x,y)
Voltage and currents: scalar amplitudes of the dominant mode

Solutions ( E ⃗ , H ⃗ \vec E,\vec H E ,H ) for TEM from Maxwell Equations

Maxwell’s Equations in absence of sources

在这里插入图片描述


propagation constant and Helmholtz equations

From M.E., we have
∇ × E ⃗ = − j ω μ H ⃗ ∇ × H ⃗ = j ω ε E ⃗ \begin{aligned} \nabla \times \vec E=&-j\omega \mu \vec H\\ \nabla \times \vec H=&j\omega \varepsilon \vec E \end{aligned} ×E =×H =jωμH jωεE
Take curl of both sides of the first equation.
∇ × ∇ × E ⃗ = − j ω μ ∇ × H ⃗ = − j ω μ ( j ω ε E ⃗ ) = ω 2 ε μ E ⃗ \nabla \times \nabla \times \vec E=-j\omega\mu\nabla \times \vec H=-j\omega\mu(j\omega\varepsilon\vec E)=\omega^2\varepsilon\mu\vec E ××E =jωμ×H =jωμ(jωεE )=ω2εμE
Note that ∇ × ∇ × E ⃗ = ∇ ( ∇ ⋅ E ⃗ ) − ∇ 2 E ⃗ = − ∇ 2 E ⃗ \nabla \times \nabla \times \vec E=\nabla(\nabla \cdot \vec E)-\nabla^2\vec E=-\nabla^2\vec E ××E =(E )2E =2E , we obtain
∇ 2 E ⃗ + ω 2 ε μ E ⃗ = 0 \nabla^2\vec E+\omega^2\varepsilon\mu\vec E=0 2E +ω2εμE =0
Analogously, if we started from the other Maxwell equation,
∇ 2 H ⃗ + ω 2 ε μ H ⃗ = 0 \nabla^2\vec H+\omega^2\varepsilon\mu\vec H=0 2H +ω2εμH =0
Defining the propagation constant k = ω ε μ k=\omega\sqrt{\varepsilon\mu} k=ωεμ , we obtain the Homogeneous wave equations (Helmholtz)
∇ 2 E ⃗ + k 2 E ⃗ = 0 ∇ 2 H ⃗ + k 2 H ⃗ = 0 \begin{aligned} \nabla^2 \vec E+k^2\vec E=&0\\ \nabla^2 \vec H+k^2\vec H=&0 \end{aligned} 2E +k2E =2H +k2H =00


separation of variables

By assuming that the dependence from z z z is the one typical of a wave travelling along + z +z +z, the field can be written as the product of a function of only ( x , y ) (x,y) (x,y) and a function of only ( z ) (z) (z):
E ⃗ ( x , y , z ) = [ e x ( x , y ) x ^ + e y ( x , y ) y ^ + e z ( x , y ) z ^ ] e − j k z H ⃗ ( x , y , z ) = [ h x ( x , y ) x ^ + h y ( x , y ) y ^ + h z ( x , y ) z ^ ] e − j k z \vec E(x,y,z)=[e_x(x,y)\hat x+e_y(x,y)\hat y+e_z(x,y)\hat z]e^{-jkz}\\ \vec H(x,y,z)=[h_x(x,y)\hat x+h_y(x,y)\hat y+h_z(x,y)\hat z]e^{-jkz} E (x,y,z)=[ex(x,y)x^+ey(x,y)y^+ez(x,y)z^]ejkzH (x,y,z)=[hx(x,y)x^+hy(x,y)y^+hz(x,y)z^]ejkz
Define transverse part and longitudinal part:

在这里插入图片描述


search for TEM solutions

Recall that for TEM, both E-and H-field orthogonal to direction of propagation.

在这里插入图片描述

Therefore, the longitudinal parts are e z = h z = 0 e_z=h_z=0 ez=hz=0. Then
E ⃗ ( r ⃗ ) = e ⃗ t ( x , y ) e − j k z \vec E(\vec r)=\vec e_t(x,y)e^{-jkz} E (r )=e t(x,y)ejkz
Plugging it into ∇ 2 E ⃗ + k 2 E ⃗ = 0 \nabla^2 \vec E+k^2\vec E=0 2E +k2E =0:
∇ 2 e ⃗ t ( x , y ) e − j k z + k 2 e ⃗ t ( x , y ) e − j k z = 0 \nabla^2 \vec e_t(x,y)e^{-jkz}+k^2\vec e_t(x,y)e^{-jkz}=0 2e t(x,y)ejkz+k2e t(x,y)ejkz=0
Expanding the Laplacian using
∇ 2 f = ∂ x 2 f + ∂ y 2 f + ∂ z 2 f ∇ 2 A ⃗ = ∇ 2 A x x ^ + ∇ 2 A y y ^ + ∇ 2 A z z ^ \begin{aligned} \nabla^2 f&=\partial _x^2 f+\partial _y^2 f+\partial _z^2 f\\ \nabla^2 \vec A&=\nabla^2 A_x \hat x+\nabla^2 A_y \hat y+\nabla^2 A_z\hat z \end{aligned} 2f2A =x2f+y2f+z2f=2Axx^+2Ayy^+2Azz^
We obtain
∇ 2 e ⃗ t ( x , y ) e − j k z = ( ∇ t 2 + ∂ z 2 ) e ⃗ t ( x , y ) e − j k z = e − j k z ∇ t 2 e ⃗ t ( x , y ) − k 2 e ⃗ t ( x , y ) e − j k z \begin{aligned} \nabla^2 \vec e_t(x,y)e^{-jkz}&=(\nabla_t^2+\partial_z^2)\vec e_t(x,y)e^{-jkz}\\ &=e^{-jkz}\nabla_t^2 \vec e_t(x,y)-k^2\vec e_t(x,y)e^{-jkz} \end{aligned} 2e t(x,y)ejkz=(t2+z2)e t(x,y)ejkz=ejkzt2e t(x,y)k2e t(x,y)ejkz
Therefore,
e − j k z ∇ t 2 e ⃗ t ( x , y ) = 0 ⇒ ∇ t 2 e ⃗ t ( x , y ) = 0 e^{-jkz}\nabla_t^2 \vec e_t(x,y)=0\Rightarrow \nabla_t^2 \vec e_t(x,y)=0 ejkzt2e t(x,y)=0t2e t(x,y)=0
Similarly
∇ t 2 h ⃗ t ( x , y ) = 0 \nabla_t^2 \vec h_t(x,y)=0 t2h t(x,y)=0
They are like static fields in absence of sources:
{ ∇ t ⋅ e ⃗ t = 0 ∇ t × e ⃗ t = 0 { ∇ t ⋅ h ⃗ t = 0 ∇ t × h ⃗ t = 0 \left\{\begin{array}{l} \nabla_{t} \cdot \vec{e}_{t}=0 \\ \nabla_{t} \times \vec{e}_{t}=0 \end{array}\qquad \left\{\begin{array}{l} \nabla_{t} \cdot \vec{h}_{t}=0 \\ \nabla_{t} \times \vec{h}_{t}=0 \end{array}\right.\right. {te t=0t×e t=0{th t=0t×h t=0
In electrostatics, the E-field can be expressed as gradient of a scalar potential Φ ( x , y ) : e ⃗ t ( x , y ) = − ∇ t Φ ( x , y ) \Phi(x, y): \quad \vec{e}_{t}(x, y)=-\nabla_{t} \Phi(x, y) Φ(x,y):e t(x,y)=tΦ(x,y)
which also satisfies Laplace equation: ∇ t 2 Φ ( x , y ) = 0 \quad \nabla_{t}^{2} \Phi(x, y)=0 t2Φ(x,y)=0

Voltage and current ( V , I V,I V,I) in a transmission line

Like static fields in (x,y)
∇ t 2 e ⃗ t ( x , y ) = 0 ∇ t 2 h ⃗ t ( x , y ) = 0 \begin{aligned} \nabla_t^2\vec e_t(x,y)=&0\\ \nabla_t^2\vec h_t(x,y)=&0 \end{aligned} t2e t(x,y)=t2h t(x,y)=00
Analogous to the statics, we can also define

  1. the voltage between the two conductors:
    V = ϕ 1 − ϕ 2 = ∫ 1 2 E ⃗ ⋅ d l ⃗ V=\phi_1-\phi_2=\int_1^2\vec E\cdot d\vec l V=ϕ1ϕ2=12E dl

在这里插入图片描述

  1. the current flowing on a conductor (Ampere’s law):
    I = ∮ C H ⃗ ⋅ d l ⃗ I=\oint_C\vec H\cdot d\vec l I=CH dl
    𝐶: closed path surrounding the cross-section of the conductor

在这里插入图片描述

  1. We define the characteristic impedance of the line as
    Z 0 = V / I Z_0=V/I Z0=V/I

Like waves in (z)
V ( z ) = e − j k z I ( z ) = e − j k z \begin{aligned} V(z)=&e^{-jkz}\\ I(z)=&e^{-jkz} \end{aligned} V(z)=I(z)=ejkzejkz

在这里插入图片描述

The characteristic impedance is
Z 0 = V + I + = − V − I − Z_0=\frac{V_+}{I_+}=-\frac{V_-}{I_-} Z0=I+V+=IV
Why minus? The change of travelling direction does not change the direction of E ⃗ \vec E E , but change the direction of H ⃗ \vec H H

Summary

structure that guides EM waves in a chosen direction and confines it in the plane transverse to the propagation direction

在这里插入图片描述

more in 3.1 Pozar D M. Microwave engineering[M]. John wiley & sons, 2009.

Relation between E ⃗ \vec E E and H ⃗ \vec H H fields

Note that ∇ × E ⃗ = − j ω μ H ⃗ \nabla \times \vec E=-j\omega\mu \vec H ×E =jωμH , E ⃗ ( r ⃗ ) = e ⃗ t ( x , y ) e − j k z \vec E(\vec r)=\vec e_t(x,y)e^{-jkz} E (r )=e t(x,y)ejkz,
H ⃗ = − 1 j ω μ ∇ × E ⃗ = − 1 j ω μ ∇ × ( e ⃗ t ( x , y ) e − j k z ) . \vec H=-\frac{1}{j\omega \mu}\nabla \times \vec E=-\frac{1}{j\omega \mu}\nabla \times (\vec e_t(x,y)e^{-jkz}). H =jωμ1×E =jωμ1×(e t(x,y)ejkz).
Using the vector identity: ∇ × ( f A ⃗ ) = ∇ f × A ⃗ + f ∇ × A ⃗ \nabla \times (f\vec A)=\nabla f\times \vec A+f\nabla\times \vec A ×(fA )=f×A +f×A ,
H ⃗ = − 1 j ω μ ( ∇ e − j k z × e ⃗ t ( x , y ) + e − j k z ∇ × e ⃗ t ( x , y ) ) = a − 1 j ω μ ∇ e − j k z × e ⃗ t ( x , y ) = k ω μ e − j k z z ^ × e ⃗ t ( x , y ) \begin{aligned} \vec H&=-\frac{1}{j\omega\mu}(\nabla e^{-jkz}\times \vec e_t(x,y)+e^{-jkz}\nabla\times \vec e_t(x,y))\\&\stackrel{a}{=}-\frac{1}{j\omega\mu}\nabla e^{-jkz}\times \vec e_t(x,y)=\frac{k}{\omega\mu}e^{-jkz}\hat z\times \vec e_t(x,y) \end{aligned} H =jωμ1(ejkz×e t(x,y)+ejkz×e t(x,y))=ajωμ1ejkz×e t(x,y)=ωμkejkzz^×e t(x,y)
where = a \stackrel{a}{=} =a is because that e ^ t ( x , y ) \hat e_t(x,y) e^t(x,y) is analogous to the static field.

Since k = ω ε μ k=\omega\sqrt{\varepsilon\mu} k=ωεμ ,
k ω μ = ω ε μ ω μ = ε μ = 1 ζ \frac{k}{\omega \mu}=\frac{\omega\sqrt{\varepsilon \mu}}{\omega \mu}=\sqrt{\frac{\varepsilon}{\mu}}=\frac{1}{\zeta} ωμk=ωμωεμ =με =ζ1
Define the medium impedance:
ζ = μ ε \zeta=\sqrt{\frac{\mu}{\varepsilon}} ζ=εμ
Thus,
H ⃗ = 1 ζ z ^ × e ⃗ t ( x , y ) e − j k z = 1 ζ z ^ × E ⃗ \vec H =\frac{1}{\zeta} \hat z\times \vec e_t(x,y)e^{-jkz}=\frac{1}{\zeta} \hat z\times \vec E H =ζ1z^×e t(x,y)ejkz=ζ1z^×E
and wave impedance
Z T E M ≜ ∣ E ∣ ∣ H ∣ = ζ Z_{TEM}\triangleq \frac{|E|}{|H|}=\zeta ZTEMHE=ζ
is equal to the intrinsic medium impedance.

Procedure for analyzing a TEM line

在这里插入图片描述

Parallel plate waveguide (PPW)

在这里插入图片描述

We assume that W ≫ d W \gg d Wd. With this argument we can neglect the fringing of the field around the edges.

在这里插入图片描述

Step 1: Solving Laplace eq. for Φ ( x , y ) \Phi(x,y) Φ(x,y)

Laplace’s eq. for the electrostatic potential
∇ t 2 Φ ( x , y ) = 0 for  0 ≤ x ≤ W , 0 ≤ y ≤ d \nabla_t^2 \Phi (x,y)=0 \qquad \text{for } 0\le x\le W , 0\le y\le d t2Φ(x,y)=0for 0xW,0yd
Boundary conditions: we assume that
Φ ( x , 0 ) = 0 , Φ ( x , d ) = V 0 \Phi(x,0)=0,\quad \Phi(x,d)=V_0 Φ(x,0)=0,Φ(x,d)=V0
Since the potential is not varying in x x x, the general solution is of the form
Φ ( x , y ) = A + B y \Phi(x,y)=A+By Φ(x,y)=A+By
From the boundary conditions we find
Φ ( x , y ) = V 0 d y \Phi(x,y)=\frac{V_0}{d}y Φ(x,y)=dV0y
Step 2: Transverse fields
e ⃗ t ( x , y ) = − ∇ t Φ ( x , y ) = − ∇ t V 0 d y = − ∂ x V 0 d y x ^ − ∂ y V 0 d y y ^ = − V 0 d y ^ E ⃗ ( r ⃗ ) = e ⃗ t ( x , y ) e − j k z = − V 0 d e − j k z y ^ h ⃗ t ( x , y ) = 1 ζ z ^ × e ⃗ t ( x , y ) = 1 ζ z ^ × ( − V 0 d y ^ ) = 1 ζ V 0 d x ^ H ⃗ ( r ⃗ ) = h ⃗ t ( x , y ) e − j k z = V 0 ζ d e − j k z x ^ \begin{aligned} &\vec{e}_{t}(x, y)=-\nabla_{t} \Phi(x, y)=-\nabla_{t} \frac{V_{0}}{d} y=-\partial_{x} \frac{V_{0}}{d} y \hat{x}-\partial_{y} \frac{V_{0}}{d} y \hat{y}=-\frac{V_{0}}{d} \hat{y}\\ &\vec{E}(\vec{r})=\vec{e}_{t}(x, y) e^{-j k z}=-\frac{V_{0}}{d} e^{-j k z} \hat{y}\\ &\vec{h}_{t}(x, y)=\frac{1}{\zeta} \hat{z} \times \vec{e}_{t}(x, y)=\frac{1}{\zeta} \hat{z} \times\left(-\frac{V_{0}}{d} \hat{y}\right)=\frac{1}{\zeta} \frac{V_{0}}{d} \hat{x}\\ &\vec{H}(\vec{r})=\vec{h}_{t}(x, y) e^{-j k z}=\frac{V_{0}}{\zeta d} e^{-j k z} \hat{x} \end{aligned} e t(x,y)=tΦ(x,y)=tdV0y=xdV0yx^ydV0yy^=dV0y^E (r )=e t(x,y)ejkz=dV0ejkzy^h t(x,y)=ζ1z^×e t(x,y)=ζ1z^×(dV0y^)=ζ1dV0x^H (r )=h t(x,y)ejkz=ζdV0ejkzx^

在这里插入图片描述

Step 3: Voltage and Current

The voltage can be calculated from the electric field as
V = − ∫ 0 d E ⃗ ( r ⃗ ) ⋅ y ^ d y = ∫ 0 d V 0 d e − j k z y ^ ⋅ y ^ d y = V 0 e − j k z = V ( z ) V=-\int_0^d \vec E(\vec r)\cdot \hat y dy=\int_0^d \frac{V_0}{d}e^{-jkz}\hat y\cdot \hat y dy=V_0e^{-jkz}=V(z) V=0dE (r )y^dy=0ddV0ejkzy^y^dy=V0ejkz=V(z)
The current can be calculated from the surface current density J ⃗ s \vec J_s J s

在这里插入图片描述

From the boundary conditions of perfect conductor, we have
J ⃗ s = n ^ × H ⃗ , n ^ = − y ^ . \vec J_s=\hat n \times \vec H,\quad \hat n=-\hat y. J s=n^×H ,n^=y^.
Thus
I = ∫ 0 W J ⃗ s ⋅ z ^ d x = ∫ 0 W − y ^ × H ⃗ ( r ⃗ ) ⋅ z ^ d x = ∫ 0 W − y ^ × ( V 0 ζ d e − j k z x ^ ) ⋅ z ^ d x = W ζ d V 0 e − j k z = I ( z ) I=\int_{0}^{W} \vec{J}_{s} \cdot \hat{z} d x=\int_{0}^{W}-\hat{y} \times \vec{H}(\vec{r}) \cdot \hat{z} d x=\int_{0}^{W}-\hat{y} \times\left(\frac{V_{0}}{\zeta d} e^{-j k z} \hat{x}\right) \cdot \hat{z} d x=\frac{W}{\zeta d} V_{0} e^{-j k z}=I(z)\\ I=0WJ sz^dx=0Wy^×H (r )z^dx=0Wy^×(ζdV0ejkzx^)z^dx=ζdWV0ejkz=I(z)
Step 4: Transmission line parameters

The characteristic impedance of a line is the ratio between voltage and current:
Z 0 = V ( z ) I ( z ) = d W ζ , Z_0=\frac{V(z)}{I(z)}=\frac{d}{W}\zeta, Z0=I(z)V(z)=Wdζ,
which is a constant depends on geometry and the material parameters. (while wave impedance Z T E M = ∣ E ∣ ∣ H ∣ = ζ = μ ε Z_{TEM}=\frac{|E|}{|H|}=\zeta=\sqrt{\frac{\mu}{\varepsilon}} ZTEM=HE=ζ=εμ only depends on material)

The propagation constant
k = ω ε μ k=\omega\sqrt{\varepsilon\mu} k=ωεμ
The phase velocity
c = ω k = 1 ε μ c=\frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon \mu}} c=kω=εμ 1


Power transported in PPW

An electromagnetic wave carries power, expressed as
s ⃗ ( r ⃗ , t ) = e ⃗ ( r ⃗ , t ) × h ⃗ ( r ⃗ , t ) ( W / m 2 ) \vec s(\vec r,t)=\vec e(\vec r,t)\times \vec h(\vec r,t)\quad (W/m^2) s (r ,t)=e (r ,t)×h (r ,t)(W/m2)
directed along the propagation direction ( z ^ ) (\hat z) (z^)

Phasor domain: S ⃗ a v = 1 2 ℜ { E ⃗ × H ⃗ ∗ } ( W / m 2 ) \vec S_{av}=\frac{1}{2}\Re\{\vec E \times \vec H^*\}\quad (W/m^2) S av=21{E ×H }(W/m2)

Then
S ⃗ a v ( r ⃗ ) = 1 2 ℜ { − V + d e − j k z y ^ × ( I + W e − j k z x ^ ) ∗ } = 1 2 ℜ { − V + d e − j k z y ^ × I + ∗ W e j k z x ^ } = 1 2 1 d W ℜ { V + I + ∗ } z ^ P a v ( z ) = ∫ A S ⃗ a v ( z ) ⋅ n ^ d A = ∫ A 1 2 1 d W ℜ { V + I + ∗ } z ^ ⋅ z ^ d A = 1 2 ℜ { V + I + ∗ } = 1 2 Z 0 ∣ I + ∣ 2 = 1 2 ∣ V + ∣ 2 Z 0 \begin{aligned} \vec{S}_{a v}(\vec{r})&=\frac{1}{2} \Re\left\{-\frac{V^{+}}{d} e^{-j k z} \hat{y} \times\left(\frac{I^{+}}{W} e^{-j k z} \hat{x}\right)^{*}\right\}\\ &=\frac{1}{2} \Re\left\{-\frac{V^{+}}{d} e^{-j k z} \hat{y} \times \frac{I^{+*}}{W} e^{j k z} \hat{x}\right\}=\frac{1}{2} \frac{1}{d W} \Re\left\{V^{+} I^{+*}\right\} \hat{z} \\ P_{a v}(z)&=\int_{A} \vec{S}_{a v}(z) \cdot \hat{n} d A=\int_{A} \frac{1}{2} \frac{1}{d W} \Re\left\{V^{+} I^{+*}\right\} \hat{z} \cdot \hat{z} d A\\ &=\frac{1}{2} \Re\left\{V^{+} I^{+*}\right\} =\frac{1}{2}Z_0|I^+|^2=\frac{1}{2}\frac{|V^+|^2}{Z_0} \end{aligned} S av(r )Pav(z)=21{dV+ejkzy^×(WI+ejkzx^)}=21{dV+ejkzy^×WI+ejkzx^}=21dW1{V+I+}z^=AS av(z)n^dA=A21dW1{V+I+}z^z^dA=21{V+I+}=21Z0I+2=21Z0V+2
In TEM transmission lines, we can calculate power flow from V , I V,I V,I


Transmission line circuit representation

在这里插入图片描述

More typical derivation using the lumped-element circuit model

From Pozar. 2.1

A transmission line is a distributed parameter network, where voltages and currents can vary in magnitude and phase over its length, while ordinary circuit analysis deals with lumped elements, where voltage and current do not vary appreciably over the physical dimension of the elements.

在这里插入图片描述

The piece of line of infinitesimal length Δ z \Delta z Δz can be modeled as a lumped-element circuit, where

R = R= R= series resistance per unit length, for both conductors, in Ω / m \Omega / \mathrm{m} Ω/m
L = L= L= series inductance per unit length, for both conductors, in H / m . \mathrm{H} / \mathrm{m} . H/m.
G = G= G= shunt conductance per unit length, in S / m \mathrm{S} / \mathrm{m} S/m
C = C= C= shunt capacitance per unit length, in F / m . \mathrm{F} / \mathrm{m} . F/m.

The series inductance L L L represents the total self-inductance of the two conductors, and the shunt capacitance C C C is due to the close proximity of the two conductors. The series resistance R R R represents the resistance due to the finite conductivity of the individual conductors, and the shunt conductance G G G is due to dielectric loss in the material between the conductors. R R R and G , G, G, therefore, represent loss.

在这里插入图片描述

From the circuit of the figure above, Kirchhoff’s voltage law can be applied to give
v ( z , t ) − R Δ z i ( z , t ) − L Δ z ∂ i ( z , t ) ∂ t − v ( z + Δ z , t ) = 0 (CM.1a) v(z, t)-R \Delta z i(z, t)-L \Delta z \frac{\partial i(z, t)}{\partial t}-v(z+\Delta z, t)=0 \tag{CM.1a} v(z,t)RΔzi(z,t)LΔzti(z,t)v(z+Δz,t)=0(CM.1a)
and Kirchhoff’s current law leads to
i ( z , t ) − G Δ z v ( z + Δ z , t ) − C Δ z ∂ v ( z + Δ z , t ) ∂ t − i ( z + Δ z , t ) = 0 (CM.1b) i(z, t)-G \Delta z v(z+\Delta z, t)-C \Delta z \frac{\partial v(z+\Delta z, t)}{\partial t}-i(z+\Delta z, t)=0 \tag{CM.1b} i(z,t)GΔzv(z+Δz,t)CΔztv(z+Δz,t)i(z+Δz,t)=0(CM.1b)
Dividing both equations by Δ z \Delta z Δz and taking the limit as Δ z → 0 \Delta z \rightarrow 0 Δz0 gives the following differential equations:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{\partial…
These are the time domain form of the transmission line equations, also known as the telegrapher equations. For the sinusoidal steady-state condition, with cosine-based phasors they can be simplified to
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{dV(z)}{d…

The two equations can be solved simultaneously to give wave equations for V ( z ) V(z) V(z) and I ( z ) I(z) I(z): (Helmholtz equation)
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ \frac{d^{2} V(…
where
γ = α + j β = ( R + j ω L ) ( G + j ω C ) (CM.5) \gamma=\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} \tag{CM.5} γ=α+jβ=(R+jωL)(G+jωC) (CM.5)
is the complex propagation constant, which is a function of frequency. Traveling wave solutions can be found as
V ( z ) = V o + e − γ z + V o − e γ z I ( z ) = I o + e − γ z + I o − e γ z (CM.6) \begin{aligned} V(z) &=V_{o}^{+} e^{-\gamma z}+V_{o}^{-} e^{\gamma z}\\ I(z) &=I_{o}^{+} e^{-\gamma z}+I_{o}^{-} e^{\gamma z} \tag{CM.6} \end{aligned} V(z)I(z)=Vo+eγz+Voeγz=Io+eγz+Ioeγz(CM.6)
where the e − γ z e^{-\gamma z} eγz term represents wave propagation in the + z +z +z direction, and the e γ z e^{\gamma z} eγz term represents wave propagation in the − z -z z direction. Applying ( C M . 3 a ) (\mathrm{CM}.3 a) (CM.3a) to the voltage of ( C M . 6 a ) (\mathrm{CM}.6 a) (CM.6a) gives the current on the line:
I ( z ) = γ R + j ω L ( V o + e − γ z − V o − e γ z ) I(z)=\frac{\gamma}{R+j \omega L}\left(V_{o}^{+} e^{-\gamma z}-V_{o}^{-} e^{\gamma z}\right) I(z)=R+jωLγ(Vo+eγzVoeγz)
Comparison with ( C M . 6 b ) (\mathrm{CM}.6 b) (CM.6b) shows that a characteristic impedance, Z 0 , Z_{0}, Z0, can be defined as
Z 0 = R + j ω L γ = R + j ω L G + j ω C (CM.7) Z_{0}=\frac{R+j \omega L}{\gamma}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}\tag{CM.7} Z0=γR+jωL=G+jωCR+jωL (CM.7)
to relate the voltage and current on the line as follows:
V o + I o + = Z 0 = − V o − I o − \frac{V_{o}^{+}}{I_{o}^{+}}=Z_{0}=\frac{-V_{o}^{-}}{I_{o}^{-}} Io+Vo+=Z0=IoVo
Then ( 2.6 b ) (2.6 \mathrm{b}) (2.6b) can be rewritten in the following form:
I ( z ) = V o + Z 0 e − γ z − V o − Z 0 e γ z (CM.8) I(z)=\frac{V_{o}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{o}^{-}}{Z_{0}} e^{\gamma z} \tag{CM.8} I(z)=Z0Vo+eγzZ0Voeγz(CM.8)
Converting back to the time domain, we can express the voltage waveform as
v ( z , t ) = ∣ V o + ∣ cos ⁡ ( ω t − β z + ϕ + ) e − α z + ∣ V o − ∣ cos ⁡ ( ω t + β z + ϕ − ) e α z (CM.9) \begin{aligned} v(z, t)=&\left|V_{o}^{+}\right| \cos \left(\omega t-\beta z+\phi^{+}\right) e^{-\alpha z} \\ &+\left|V_{o}^{-}\right| \cos \left(\omega t+\beta z+\phi^{-}\right) e^{\alpha z}\tag{CM.9} \end{aligned} v(z,t)=Vo+cos(ωtβz+ϕ+)eαz+Vocos(ωt+βz+ϕ)eαz(CM.9)
where ϕ ± \phi^{\pm} ϕ± is the phase angle of the complex voltage V o ± V_{o}^{\pm} Vo±. Using arguments similar to those in Section 1.4 , 1.4, 1.4, we find that the wavelength on the line is
λ = 2 π β (CM.10) \lambda=\frac{2 \pi}{\beta} \tag{CM.10} λ=β2π(CM.10)
and the phase velocity is
v p = ω β = λ f . (CM.11) v_p=\frac{\omega}{\beta}=\lambda f.\tag{CM.11} vp=βω=λf.(CM.11)
The lossless line

The above solution is for a general transmission line, including loss effects, and it was seen that the propagation constant and characteristic impedance were complex. In many practical cases, however, the loss of the line is very small and so can be neglected, resulting in a simplification of the results. Setting R = G = 0 R=G=0 R=G=0 gives the propagation constant as
γ = α + j β = j ω L C \gamma=\alpha+j \beta=j \omega \sqrt{L C} γ=α+jβ=jωLC
or
β = ω L C α = 0 (CM.12) \begin{array}{l} \beta=\omega \sqrt{L C} \\\tag{CM.12} \alpha=0 \end{array} β=ωLC α=0(CM.12)
As expected for a lossless line, the attenuation constant α \alpha α is zero. The characteristic impedance reduces to
Z 0 = L C (CM.13) Z_{0}=\sqrt{\frac{L}{C}} \tag{CM.13} Z0=CL (CM.13)
which is now a real number. The general solutions for voltage and current on a lossless transmission line can then be written as
V ( z ) = V o + e − j β z + V o − e j β z I ( z ) = V o + Z 0 e − j β z − V o − Z 0 e j β z (CM.14) \begin{array}{l} V(z)=V_{o}^{+} e^{-j \beta z}+V_{o}^{-} e^{j \beta z} \\ I(z)=\frac{V_{o}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{o}^{-}}{Z_{0}} e^{j \beta z} \tag{CM.14} \end{array} V(z)=Vo+ejβz+VoejβzI(z)=Z0Vo+ejβzZ0Voejβz(CM.14)
The wavelength is
λ = 2 π β = 2 π ω L C (CM.15) \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{\omega \sqrt{L C}}\tag{CM.15} λ=β2π=ωLC 2π(CM.15)
and the phase velocity is
v p = ω β = 1 L C (CM.16) v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}\tag{CM.16} vp=βω=LC 1(CM.16)

Summary: Transmission line parameters

在这里插入图片描述

Terminated lossless line

Voltage reflection coefficient

在这里插入图片描述

An incident wave is generated from a source:
V + e − j k 0 z V^+e^{-jk_0z} V+ejk0z
A reflected wave will be generated at the edge:
V − e j k 0 z V^-e^{jk_0z} Vejk0z
( V + V^+ V+ and V − V^- V can be complex number)

Voltage reflection coefficient:
Γ V = V − V + \Gamma_V=\frac{V^-}{V^+} ΓV=V+V
Total voltage and current at a generic point z z z:
V ( z ) = V + e − j k 0 z + V − e j k 0 z I ( z ) = 1 Z 0 ( V + e − j k 0 z − V − e j k 0 z ) = V + Z 0 ( e − j k z 0 − Γ V e j k z 0 ) \begin{aligned} V(z)&=V^+e^{-jk_0z}+V^-e^{jk_0z}\\ I(z)&=\frac{1}{Z_0}(V^+e^{-jk_0z}-V^-e^{jk_0z})=\frac{V^+}{Z_0}(e^{-jkz_0}-\Gamma_V e^{jkz_0}) \end{aligned} V(z)I(z)=V+ejk0z+Vejk0z=Z01(V+ejk0zVejk0z)=Z0V+(ejkz0ΓVejkz0)
(because Z 0 = V + / I + = − V − / I − Z_0=V^+/I^+=-V^-/I^- Z0=V+/I+=V/I)

We assume V l = V ( 0 ) V_l=V(0) Vl=V(0), the current and voltage at the load are
V ( 0 ) = V l = V + + V − I ( 0 ) = I l = 1 Z 0 ( V + − V − ) \begin{aligned} V(0)&=V_l=V^++V^-\\ I(0)&=I_l=\frac{1}{Z_0}(V^+-V^-) \end{aligned} V(0)I(0)=Vl=V++V=Il=Z01(V+V)
Since V l = Z l I l V_l=Z_lI_l Vl=ZlIl, we have
V + + V − = Z l Z 0 ( V + − V − ) ⇒ Γ V = V − V + = Z l − Z 0 Z l + Z 0 V^++V^-=\frac{Z_l}{Z_0}(V^+-V^-)\Rightarrow \Gamma _V=\frac{V^-}{V^+}=\frac{Z_l-Z_0}{Z_l+Z_0} V++V=Z0Zl(V+V)ΓV=V+V=Zl+Z0ZlZ0
Similarly we can derive current reflection coefficient:
Γ I = I − I + = − V − V + = Z 0 − Z l Z l + Z 0 = − Γ V \Gamma_I=\frac{I^-}{I^+}=-\frac{V^-}{V^+}=\frac{Z_0-Z_l}{Z_l+Z_0}=-\Gamma_V ΓI=I+I=V+V=Zl+Z0Z0Zl=ΓV
They are equivalent.
From now we will use only voltage reflection coefficient, we indicate with Γ \Gamma Γ.

matching: Z l = Z 0 , Γ = 0 ⟹  No reflected wave, perfect matching Z_l=Z_0,\Gamma=0\Longrightarrow\text{ No reflected wave, perfect matching} Zl=Z0,Γ=0 No reflected wave, perfect matching

standing waves: ∣ Γ ∣ = 1 |\Gamma|=1 Γ=1

在这里插入图片描述

If they don’t have the same amplitude, oscillate between a max and a min

Voltage standing wave ratio (VSWR):
V S W R = V m a x V m i n = 1 + ∣ Γ ∣ 1 − ∣ Γ ∣ \mathrm{VSWR}=\frac{V_{max}}{V_{min}}=\frac{1+|\Gamma|}{1-|\Gamma|} VSWR=VminVmax=1Γ1+Γ


Power transfer in a transmission line

Remember that the characteristic impedance Z 0 Z_0 Z0 reduces to a real number for a lossless line, the instantaneous power carried by the incident wave is
P i ( t ) = v i ( t ) ⋅ i i ( t ) = R e { V + e j ω t } ⋅ R e { I + e j ω t } = R e { ∣ V + ∣ e j ϕ + e j ω t } ⋅ R e { ∣ V + ∣ Z 0 e j ϕ + e j ω t } = ∣ V + ∣ 2 Z 0 cos ⁡ 2 ( ω t + ϕ + ) \begin{aligned} P_{i}(t)&=v_{i}(t) \cdot i_{i}(t)=\mathcal{R} e\left\{V^{+} e^{j \omega t}\right\} \cdot \mathcal{R} e\left\{I^{+} e^{j \omega t}\right\}\\ &=\mathcal{R} e\left\{\left|V^{+}\right| e^{j \phi^{+}} e^{j \omega t}\right\} \cdot \mathcal{R} e\left\{\frac{\left|V^{+}\right|}{Z_{0}} e^{j \phi^{+}} e^{j \omega t}\right\} =\frac{\left|V^{+}\right|^{2}}{Z_{0}} \cos ^{2}\left(\omega t+\phi^{+}\right) \end{aligned} Pi(t)=vi(t)ii(t)=Re{V+ejωt}Re{I+ejωt}=Re{V+ejϕ+ejωt}Re{Z0V+ejϕ+ejωt}=Z0V+2cos2(ωt+ϕ+)
Taking time average, we have
P i , a v = 1 2 ∣ V + ∣ 2 Z 0 Incident power P r , a v = ∣ Γ ∣ 2 2 ∣ V + ∣ 2 Z 0 Reflected power P a v = P i , a v − P r , a v = ∣ V l ∣ 2 2 R e { 1 Z l } Power delivered to the load  \begin{aligned} P_{i, a v}=&\frac{1}{2} \frac{\left|V^{+}\right|^{2}}{Z_{0}} &&\text {Incident power} \\ P_{r, a v}=&\frac{|\Gamma|^{2}}{2} \frac{\left|V^{+}\right|^{2}}{Z_{0}} &&\text {Reflected power}\\ P_{av}=&P_{i, a v}-P_{r, a v}=\frac{\left|V_l\right|^{2}}{2} \mathcal{R} e\left\{\frac{1}{Z_l}\right\} &&\text {Power delivered to the load } \end{aligned} Pi,av=Pr,av=Pav=21Z0V+22Γ2Z0V+2Pi,avPr,av=2Vl2Re{Zl1}Incident powerReflected powerPower delivered to the load 

在这里插入图片描述

Often used in decibels: Γ d B = 10 log ⁡ 10 ∣ Γ ∣ 2 \Gamma_{\mathrm{dB}}=10\log_{10}|\Gamma|^2 ΓdB=10log10Γ2.


Reflection Coefficient: Special cases

Γ = Z l − Z 0 Z l + Z 0 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0} Γ=Zl+Z0ZlZ0

在这里插入图片描述


Short circuit line
Γ = Z l − Z 0 Z l + Z 0 = − 1 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0}=-1 Γ=Zl+Z0ZlZ0=1

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


Open circuit line
Γ = Z l − Z 0 Z l + Z 0 = 1 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0}=1 Γ=Zl+Z0ZlZ0=1

在这里插入图片描述
在这里插入图片描述

v ( z , t ) = 2 cos ⁡ ( k 0 z ) cos ⁡ ( ω t ) i ( z , t ) = 2 sin ⁡ ( k 0 z ) sin ⁡ ( ω t ) \begin{aligned} v(z,t)&=2\cos (k_0z)\cos (\omega t)\\ i(z,t)&=2\sin (k_0z)\sin (\omega t) \end{aligned} v(z,t)i(z,t)=2cos(k0z)cos(ωt)=2sin(k0z)sin(ωt)


Matched line
Γ = Z l − Z 0 Z l + Z 0 = 0 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0}=0 Γ=Zl+Z0ZlZ0=0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Summary

在这里插入图片描述

Input Impedance

If we are interested in knowing the voltage at the generator:

在这里插入图片描述

Impedance transfer: Impedance seen looking toward the load
Z i n ( − l ) = V ( − l ) I ( − l ) = Z 0 Z l + j Z 0 tan ⁡ k 0 l Z 0 + j Z l tan ⁡ k 0 l Z_{in}(-l)=\frac{V(-l)}{I(-l)}=Z_0\frac{Z_l+jZ_0\tan k_0l}{Z_0+jZ_l\tan k_0l} Zin(l)=I(l)V(l)=Z0Z0+jZltank0lZl+jZ0tank0l
Proof:

在这里插入图片描述

Z ( − l ) = V ( − l ) I ( − l ) = V + ( e j k 0 l + Z l − Z 0 Z l + Z 0 e − j k 0 l ) V + Z 0 ( e j k 0 l − Z l − Z 0 Z l + Z 0 e − j k 0 l ) = Z 0 ( Z l + Z 0 ) e j k 0 l + ( Z l − Z 0 ) e − j k 0 l ( Z l + Z 0 ) e j k 0 l − ( Z l − Z 0 ) e − j k 0 l = Z 0 Z l ( e j k 0 l + e − j k 0 l ) + Z 0 ( e j k 0 l − e − j k 0 l ) Z 0 ( e j k 0 l + e − j k 0 l ) + Z l ( e j k 0 l − e − j k 0 l ) = Z 0 Z l cos ⁡ k 0 l + j Z 0 sin ⁡ k 0 l Z 0 cos ⁡ k 0 l + j Z l sin ⁡ k 0 l = Z 0 Z l + j Z 0 tan ⁡ k 0 l Z 0 + j Z l tan ⁡ k 0 l \begin{aligned} Z(-l)=& \frac{V(-l)}{I(-l)}=\frac{V^{+}\left(e^{j k_{0} l}+\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}} e^{-j k_{0} l}\right)}{\frac{V^{+}}{Z_{0}}\left(e^{j k_{0} l}-\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}} e^{-j k_{0} l}\right)}=Z_{0} \frac{\left(Z_{l}+Z_{0}\right) e^{j k_{0} l}+\left(Z_{l}-Z_{0}\right) e^{-j k_{0} l}}{\left(Z_{l}+Z_{0}\right) e^{j k_{0} l}-\left(Z_{l}-Z_{0}\right) e^{-j k_{0} l}} \\ =&Z_{0} \frac{Z_{l}\left(e^{j k_{0} l}+e^{-j k_{0} l}\right)+Z_{0}\left(e^{j k_{0} l}-e^{-j k_{0} l}\right)}{Z_{0}\left(e^{j k_{0} l}+e^{-j k_{0} l}\right)+Z_{l}\left(e^{j k_{0} l}-e^{-j k_{0} l}\right)}=Z_{0} \frac{Z_{l} \cos k_{0} l+j Z_{0} \sin k_{0} l}{Z_{0} \cos k_{0} l+j Z_{l} \sin k_{0} l} \\ =&Z_{0} \frac{Z_{l}+j Z_{0} \tan k_{0} l}{Z_{0}+j Z_{l} \tan k_{0} l} \end{aligned} Z(l)===I(l)V(l)=Z0V+(ejk0lZl+Z0ZlZ0ejk0l)V+(ejk0l+Zl+Z0ZlZ0ejk0l)=Z0(Zl+Z0)ejk0l(ZlZ0)ejk0l(Zl+Z0)ejk0l+(ZlZ0)ejk0lZ0Z0(ejk0l+ejk0l)+Zl(ejk0lejk0l)Zl(ejk0l+ejk0l)+Z0(ejk0lejk0l)=Z0Z0cosk0l+jZlsink0lZlcosk0l+jZ0sink0lZ0Z0+jZltank0lZl+jZ0tank0l


Input impedance: Special cases

Z i n ( − l ) = Z 0 Z l + j Z 0 tan ⁡ k 0 l Z 0 + j Z l tan ⁡ k 0 l Z_{in}(-l)=Z_0\frac{Z_l+jZ_0\tan k_0l}{Z_0+jZ_l\tan k_0l} Zin(l)=Z0Z0+jZltank0lZl+jZ0tank0l

short circuit
Z l = 0 , Z i n = j Z 0 tan ⁡ k 0 l Z_l=0, Z_{in}=jZ_0\tan k_0l Zl=0,Zin=jZ0tank0l

在这里插入图片描述

open circuit
Z l = ∞ , Z i n = − j Z 0 cot ⁡ k 0 l Z_l=\infty,Z_{in}=-jZ_0\cot k_0l Zl=,Zin=jZ0cotk0l

在这里插入图片描述

matched load: input impedance is constant and independent on the length
Z l = Z 0 = Z i n Z_l=Z_0=Z_{in} Zl=Z0=Zin

在这里插入图片描述


Different impedances

在这里插入图片描述


Power delivered to the load

在这里插入图片描述

For lossless lines, power delivered to the load is
P l = ∣ I i n ∣ 2 2 Re ⁡ { Z i n } = ∣ V i n ∣ 2 2 Re ⁡ { 1 Z i n } P_{l}=\frac{\left|I_{i n}\right|^{2}}{2} \operatorname{Re}\left\{Z_{i n}\right\}=\frac{\left|V_{i n}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{i n}}\right\} Pl=2Iin2Re{Zin}=2Vin2Re{Zin1}
This method is equivalent to the method in the previous section [Power transfer in a transmission line](# Power transfer in a transmission line).

Example:

在这里插入图片描述

The power delivered to the load can be calculated both using
P l = ∣ I i n ∣ 2 2 Re ⁡ { Z i n } = ∣ V i n ∣ 2 2 Re ⁡ { 1 Z i n } P_{l}=\frac{\left|I_{i n}\right|^{2}}{2} \operatorname{Re}\left\{Z_{i n}\right\}=\frac{\left|V_{i n}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{i n}}\right\} Pl=2Iin2Re{Zin}=2Vin2Re{Zin1}
or
P l = ∣ I l ∣ 2 2 Re ⁡ { Z l } = ∣ V l ∣ 2 2 Re ⁡ { 1 Z l } P_{l}=\frac{\left|I_{l}\right|^{2}}{2} \operatorname{Re}\left\{Z_{l}\right\}=\frac{\left|V_{l}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{l}}\right\} Pl=2Il2Re{Zl}=2Vl2Re{Zl1}


We can first compute Z i n Z_{in} Zin by
k 0 l = 2 π λ λ λ 8 = π 4 tan ⁡ ( k 0 l ) = tan ⁡ ( π 4 ) = 1 Z i n ( − l ) = Z 0 Z l + j Z 0 tan ⁡ k 0 l Z 0 + j Z l tan ⁡ k 0 l = 40 − 30 j   Ω \begin{aligned} k_{0} l=\frac{2 \pi \lambda}{\lambda} \frac{\lambda}{8}=\frac{\pi}{4} \\ \tan \left(k_{0} l\right)=\tan \left(\frac{\pi}{4}\right)=1 \end{aligned}\\ Z_{in}(-l)=Z_0\frac{Z_l+jZ_0\tan k_0l}{Z_0+jZ_l\tan k_0l}=40-30j~\Omega k0l=λ2πλ8λ=4πtan(k0l)=tan(4π)=1Zin(l)=Z0Z0+jZltank0lZl+jZ0tank0l=4030j Ω

在这里插入图片描述

Therefore,
V i n = V g Z i n Z g + Z i n = 7.33 − 1.33 j   Ω P l = ∣ V i n ∣ 2 2 Re ⁡ { 1 Z i n } = 0.444   W V_{in}=V_g\frac{Z_{in}}{Z_g+Z_{in}}=7.33-1.33j~\Omega\\ P_{l}=\frac{\left|V_{i n}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{i n}}\right\}=0.444~W Vin=VgZg+ZinZin=7.331.33j ΩPl=2Vin2Re{Zin1}=0.444 W


Or we can first compute Γ \Gamma Γ:
Γ = Z l − Z 0 Z l + Z 0 = 1 3 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0}=\frac{1}{3} Γ=Zl+Z0ZlZ0=31
Then according to the definition,
V ( z ) = V + ( e − j k 0 z + 1 3 e j k o z ) V(z)=V^+(e^{-jk_0z}+\frac{1}{3}e^{jk_oz}) V(z)=V+(ejk0z+31ejkoz)
By imposing the boundary conditions V ( z = − l ) = V i n V(z=-l)=V_{in} V(z=l)=Vin, we obtain V + V^+ V+:
V + = V i n e − j k 0 z + 1 3 e j k o z = 5.6555 − 4.2384 j   V V^+=\frac{V_{in}}{e^{-jk_0z}+\frac{1}{3}e^{jk_oz}}=5.6555-4.2384j~V V+=ejk0z+31ejkozVin=5.65554.2384j V
Thus
V l = V ( z = 0 ) = 7.5407 − 5.6513 j   V P l = ∣ V l ∣ 2 2 Re ⁡ { 1 Z l } = 0.444   W V_l=V(z=0)=7.5407-5.6513j~V\\ P_{l}=\frac{\left|V_{l}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{l}}\right\}=0.444~W Vl=V(z=0)=7.54075.6513j VPl=2Vl2Re{Zl1}=0.444 W

Therefore,
V i n = V g Z i n Z g + Z i n = 7.33 − 1.33 j   Ω P l = ∣ V i n ∣ 2 2 Re ⁡ { 1 Z i n } = 0.444   W V_{in}=V_g\frac{Z_{in}}{Z_g+Z_{in}}=7.33-1.33j~\Omega\\ P_{l}=\frac{\left|V_{i n}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{i n}}\right\}=0.444~W Vin=VgZg+ZinZin=7.331.33j ΩPl=2Vin2Re{Zin1}=0.444 W


Or we can first compute Γ \Gamma Γ:
Γ = Z l − Z 0 Z l + Z 0 = 1 3 \Gamma=\frac{Z_l-Z_0}{Z_l+Z_0}=\frac{1}{3} Γ=Zl+Z0ZlZ0=31
Then according to the definition,
V ( z ) = V + ( e − j k 0 z + 1 3 e j k o z ) V(z)=V^+(e^{-jk_0z}+\frac{1}{3}e^{jk_oz}) V(z)=V+(ejk0z+31ejkoz)
By imposing the boundary conditions V ( z = − l ) = V i n V(z=-l)=V_{in} V(z=l)=Vin, we obtain V + V^+ V+:
V + = V i n e − j k 0 z + 1 3 e j k o z = 5.6555 − 4.2384 j   V V^+=\frac{V_{in}}{e^{-jk_0z}+\frac{1}{3}e^{jk_oz}}=5.6555-4.2384j~V V+=ejk0z+31ejkozVin=5.65554.2384j V
Thus
V l = V ( z = 0 ) = 7.5407 − 5.6513 j   V P l = ∣ V l ∣ 2 2 Re ⁡ { 1 Z l } = 0.444   W V_l=V(z=0)=7.5407-5.6513j~V\\ P_{l}=\frac{\left|V_{l}\right|^{2}}{2} \operatorname{Re}\left\{\frac{1}{Z_{l}}\right\}=0.444~W Vl=V(z=0)=7.54075.6513j VPl=2Vl2Re{Zl1}=0.444 W

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值