强化学习笔记

1.Q-learning与sarsa区别:

2.Sarsa(lambda):

 lambda 就是一个衰变值, 他可以让你知道离奖励越远的步可能并不是让你最快拿到奖励的步, 所以我们想象我们站在宝藏的位置, 回头看看我们走过的寻宝之路, 离宝藏越近的脚印越看得清, 远处的脚印太渺小, 我们都很难看清, 那我们就索性记下离宝藏越近的脚印越重要, 越需要被好好的更新. 和之前我们提到过的 奖励衰减值 gamma 一样, lambda 是脚步衰减值, 都是一个在 0 和 1 之间的数.

当 lambda 取0, 就变成了 Sarsa 的单步更新, 当 lambda 取 1, 就变成了回合更新, 对所有步更新的力度都是一样. 当 lambda 在 0 和 1 之间, 取值越大, 离宝藏越近的步更新力度越大. 这样我们就不用受限于单步更新的每次只能更新最近的一步, 我们可以更有效率的更新所有相关步了.

3.Policy Gradients

直接输出动作的最大好处就是, 它能在一个连续区间内挑选动作. Policy Gradients 没有误差! 但是他的确是在进行某一种的反向传递. 这种反向传递的目的是让这次被选中的行为更有可能在下次发生. 通过reward来确定这个行为是不是应当被增加被选的概率。

观测的信息通过神经网络分析, 选出了左边的行为, 我们直接进行反向传递, 使之下次被选的可能性增加, 但是奖惩信息却告诉我们, 这次的行为是不好的, 那我们的动作可能性增加的幅度 随之被减低. 这样就能靠奖励来左右我们的神经网络反向传递. 我们再来举个例子, 假如这次的观测信息让神经网络选择了右边的行为, 右边的行为随之想要进行反向传递, 使右边的行为下次被多选一点, 这时, 奖惩信息也来了, 告诉我们这是好行为, 那我们就在这次反向传递的时候加大力度, 让它下次被多选的幅度更猛烈! 

输出的这个 action 可以是一个连续的值, 之前我们说到的 value-based 方法输出的都是不连续的值, 然后再选择值最大的 action. 而 policy gradient 可以在一个连续分布上选取 action.

 loss = tf.reduce_mean(neg_log_prob * self.tf_vt)  # (vt = 本reward + 衰减的未来reward) 引导参数的梯度下降

4.actor-critic

Actor 基于概率选行为, Critic 基于 Actor 的行为评判行为的得分, Actor 根据 Critic 的评分修改选行为的概率. Actor 想要最大化期望的 reward, 在 Actor Critic 算法中, 我们用 “比平时好多少” (TD error) 来当做 reward,  actor更新 

with tf.variable_scope('exp_v'):
    log_prob = tf.log(self.acts_prob[0, self.a])    # log 动作概率
    self.exp_v = tf.reduce_mean(log_prob * self.td_error)   # log 概率 * TD 方向
with tf.variable_scope('train'):
    # 因为我们想不断增加这个 exp_v (动作带来的额外价值),
    # 所以我们用过 minimize(-exp_v) 的方式达到
    # maximize(exp_v) 的目的
    self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v)

critic更新:

with tf.variable_scope('squared_TD_error'):
    self.td_error = self.r + GAMMA * self.v_ - self.v
    self.loss = tf.square(self.td_error)    # TD_error = (r+gamma*V_next) - V_eval
with tf.variable_scope('train'):
    self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)

5.DDPG

DDPG 中所用到的神经网络和之前提到的 Actor-Critic 形式差不多, 也需要有基于 策略 Policy 的神经网络 和基于 价值 Value 的神经网络, 但是为了体现 DQN 的思想, 每种神经网络都需要再细分为两个, Policy Gradient 这边, 我们有估计网络和现实网络, 估计网络用来输出实时的动作, 供 actor 在现实中实行. 而现实网络则是用来更新价值网络系统的. 再来看看价值系统这边, 我们也有现实网络和估计网络, 他们都在输出这个状态的价值, 而输入端却有不同, 状态现实网络这边会拿着从动作现实网络来的动作加上状态的观测值加以分析, 而状态估计网络则是拿着当时 Actor 施加的动作当做输入.在实际运用中, DDPG 的这种做法的确带来了更有效的学习过程. 

 

 一句话概括 DDPG: Google DeepMind 提出的一种使用 Actor Critic 结构, 但是输出的不是行为的概率, 而是具体的行为, 用于连续动作 (continuous action) 的预测. DDPG 结合了之前获得成功的 DQN 结构, 提高了 Actor Critic 的稳定性和收敛性.

Actor 要朝着更有可能获取大 Q 的方向修改动作参数了.

actor的target产生的actor用于critic的target网络,

class Actor(object):
    def __init__(self):
        ...
        with tf.variable_scope('Actor'):
            # 这个网络用于及时更新参数
            self.a = self._build_net(S, scope='eval_net', trainable=True)
            # 这个网络不及时更新参数, 用于预测 Critic 的 Q_target 中的 action
            self.a_ = self._build_net(S_, scope='target_net', trainable=False)
        ...

class Critic(object):
    def __init__(self):
        with tf.variable_scope('Critic'):
            # 这个网络是用于及时更新参数
            self.a = a  # 这个 a 是来自 Actor 的, 但是 self.a 在更新 Critic 的时候是之前选择的 a 而不是来自 Actor 的 a.
            self.q = self._build_net(S, self.a, 'eval_net', trainable=True)
            # 这个网络不及时更新参数, 用于给出 Actor 更新参数时的 Gradient ascent 强度
            self.q_ = self._build_net(S_, a_, 'target_net', trainable=False)

5.A3C

多核训练actor-critic

Google DeepMind 提出的一种解决 Actor-Critic 不收敛问题的算法. 它会创建多个并行的环境, 让多个拥有副结构的 agent 同时在这些并行环境上更新主结构中的参数. 并行中的 agent 们互不干扰, 而主结构的参数更新受到副结构提交更新的不连续性干扰, 所以更新的相关性被降低, 收敛性提高. 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值