李宏毅深度学习2020
文章平均质量分 87
基于李宏毅2020机器学习深度学习的学习笔记与作业分享
建议按顺序阅读
梆子井欢喜坨
这个作者很懒,什么都没留下…
展开
-
李宏毅2020机器学习深度学习(1) 线性回归 笔记+作业
目录1. 任务描述2. 数据预处理3. 建立模型4. 关键算法:Adagrad5. 完整代码1. 任务描述根据某地一年内18项空气质量有关的检测指标,在24小时的变化数据,使用线性回归预测PM2.5(也是指标之一)的变化。数据如图所示训练集:每个月前20天的完整数据测试集:从剩下的资料中(10 * 12天)中抽出240 * 10小时的数据作为测试每条数据中,前9小时的观测数据作为feature,共9 * 18 = 162个参数,第10小时的PM2.5作为answer2. 数据预处理指标RF原创 2020-09-20 10:42:04 · 897 阅读 · 1 评论 -
李宏毅2020机器学习深度学习(2) 分类 笔记+作业
1. 背景知识2. 作业描述3. 数据预处理4. 建立模型5. logistic回归完整代码6. 生成模型完整代码原创 2020-09-22 19:28:40 · 1437 阅读 · 0 评论 -
李宏毅2020机器学习深度学习(3) NN与反向传播算法 笔记
目录1. 神经网络(neural networks)简介2. 反向传播算法3. 推广到矩阵形式1. 神经网络(neural networks)简介2. 反向传播算法3. 推广到矩阵形式原创 2020-09-26 10:26:34 · 598 阅读 · 0 评论 -
李宏毅2020机器学习深度学习(3) CNN卷积神经网络 笔记+作业
目录1. 背景知识1.1 CNN(卷积神经网络)结构介绍1.2 卷积层1.3 Pooling池化层1.4 经过一次卷积与池化的结果1.5 Flatten1.6 注意Filter的维度1.7 补充:1x1卷积1.8 CNN学到了什么2. 作业描述3. 数据预处理4. 在train set 上训练,参考val set上的结果调参5. 在总的训练集上训练1. 背景知识1.1 CNN(卷积神经网络)结构介绍整体结构图如下所示:输入数据(如一张图片)会经过许多卷积运算和Pooling池化层,最后拉平为一维再原创 2020-10-09 14:57:48 · 5118 阅读 · 4 评论 -
李宏毅2020机器学习深度学习(4) Word Embedding
目录原创 2020-11-03 21:11:05 · 355 阅读 · 1 评论 -
李宏毅2020机器学习深度学习(4) Semi-supervised Learning
目录1. Semi-supervised Learning for Generative Model2. Low-density Separation Assumption3. Smoothness Assumption4. Better Representation为什么需要半监督学习?因为打好标签的数据严重不足。对未打标签数据的分布做了一些先验假设。1. Semi-supervised Learning for Generative Model假设图中绿色的点为unlabeled data原创 2020-12-24 22:04:55 · 308 阅读 · 0 评论 -
李宏毅2020机器学习深度学习(4) RNN循环神经网络 笔记+作业
目录1. 背景知识1.1 RNN(循环神经网络)结构介绍2. 作业描述3. 数据预处理1. 背景知识1.1 RNN(循环神经网络)结构介绍2. 作业描述3. 数据预处理原创 2020-11-14 20:25:28 · 2530 阅读 · 0 评论 -
李宏毅2020机器学习深度学习(8) Seq2seq 作业详解
对应课程笔记:Conditional Generation by RNN&Attention原创 2021-05-09 21:11:56 · 1502 阅读 · 2 评论 -
李宏毅2020机器学习深度学习:Conditional Generation by RNN&Attention
目录原创 2021-03-26 13:36:25 · 585 阅读 · 0 评论 -
李宏毅2020机器学习深度学习:Pointer Network(阅读原论文后修订)
例如输入一个十个点(用x,y坐标表示)的序列希望神经网络能输出包围剩下点的,组成边界的点序列。考虑采用Encoder-Decoder的结构进行这样的训练结果是不work的。这个问题的输入点数是不确定的,而Decoder部分输出节点数无法调整。用attention进行改造,让NN动态决定输出的set的大小。不用 softmax 层,而使用 argmax 筛选输出。(x0x_0x0,y0y_0y0)代表ENDPoint Network适合用在Summarization任务中从in原创 2021-04-19 14:40:52 · 597 阅读 · 1 评论 -
李宏毅2020机器学习深度学习:Recursive Structure
可以认为Recurrent Structure是Recursive Structure的一种子集。以情感分析任务为例一个递归的结构是这样的,隐藏层h的维度要和输入x相同。从语法结构上进行解释:“very”要和“good”放在一起,再被“not”否定。希望“very”和“good”经过函数f(会是一个复杂的NN)得到的结果,意思为“very good”这个network要处理一些复杂的情况,如知道"not"会反转另一个输入的语义知道"very"会强调另一个输入的语义一次训练过程如下原创 2021-04-19 16:21:36 · 324 阅读 · 0 评论 -
李宏毅2020机器学习深度学习:Transformer
目录简单总结:背景注意力机制简单总结:带有“Self-attention”机制的seq2seq模型背景在处理序列问题时RNN难以并行CNN可以并行,但是要堆很多层注意力机制全面替代了RNN,输出序列基于整个输入序列为什么要除 根号d?论文有注解通过矩阵运算,可以进行并行操作...原创 2021-03-23 21:03:04 · 1059 阅读 · 2 评论 -
李宏毅2020机器学习深度学习:ELMO, BERT,GPT
本篇应该与之前的笔记:word embedding配合使用在上篇笔记中,是要求同一个单词(one-hot编码)在不同位置输入,要得到同样的词向量。即不管对应的 word 出现在哪个句子中的哪个位置, 它在向量空间中的 representations 不变。(In typical word embedding, each word type has an embedding)但考虑到同一个词汇,在不同的语境可能有不同的意思。如图中的bank,出现在不同的句子中,上下文不同,词义也不同。说明一下,这原创 2021-03-18 14:36:06 · 486 阅读 · 0 评论 -
李宏毅机器学习:HMM/CRF
1. 隐马尔可夫(HMM)1.1 词性标注(part-of-speech tagging,POS tagging)李老师的课程由词性标注问题引出隐马尔可夫模型。词性标注指的是在一串的字词中标注每一个所属的词性,是输入是序列,输出也是序列的结构化学习问题。这里就有一个问题,同样的单词可能有不同的词性。比如在下面的例子中,第一个“saw”是动词,第二个“saw”是名词1.2 隐马尔可夫模型(Hidden Markov Model,HMM)利用隐马尔可夫模型完成词性标注有两步:第一步是基于语法生原创 2020-12-28 17:19:28 · 1259 阅读 · 0 评论