这次根据一篇教程Jay Alammar: A Visual Guide to Using BERT for the First Time学习下如何在Pytorch框架下使用BERT。
主要参考了中文翻译版本
教程提供了可用的代码,可以在colab或者github获取。
1. huggingface/transformers
Transformers提供了数千个预训练的模型来执行文本任务,如100多种语言的分类、信息提取、问答、摘要、翻译、文本生成等。
文档:https://huggingface.co/transformers/
模型:https://huggingface.co/models
huggingface团队用pytorch复现许多模型,本次要使用它们提出的DistilBERT模型。
2. 数据集
本次使用的数据集是 SST2,是一个电影评论的数据集。用标签 0/1 代表情感正负。
3. 模型
句子的情感分类模型由两部分组成:
- DistilBERT处理输入的句子,并将它从句子中提取的一些信息传递给下一个模型。 DistilBERT 是一个更小版本的 BERT 模型,是由 HuggingFace 团队开源的。它保留了 BERT 能力的同时,比 BERT 更小更快。
- 一个基本的 Logistic Regression 模型,它将处理 DistilBERT 的输出结果并且将句子进行分类,输出0或1。
在这两个模型之间传递的数据是一个 768 维的向量。
假设句子长度为n,那及一个句子经过BERT应该得到n个768 维的向量。
实际上只使用[CLS]位置的向量看作是我们用来分类的句子的embedding向量。
4. 训练与预测
4.1 训练
虽然我们使用了两个模型,但是只需要训练回归模型(Logistic Regression)即可。
对于 DistilBERT 模型,使用该模型预训练的参数即可,这个模型没有被用来做句子分类任务的训练和微调。
使用 Scikit Learn 工具包进行操作。将整个BERT输出的数据分成 train/test 数据集。
将75%的数据划为训练集,将25%的数据划分为测试集。
sklearn的train/test split在进行分割之前会对示例进行shuffles。
接下来就用机器学习的方法训练回归模型就行了。
4.2 预测
如何使用模型进行预测呢?
比如,我们要对句子 “a visually stunning rumination on love” 进行分类
第一步,用 BERT 的分词器(tokenizer)将句子分成 tokens;
第二步,添加特殊的 tokens 用于句子分类任务(在句子开头加上 [CLS],在句子结尾加上 [SEP]);
第三步,分词器(tokenizer)会将每个 token 替换成 embedding 表中的ID,embedding 表是我们预训练模型自带的;
下面这一行代码就完成了上述3步。
tokenizer.encode("a visually stunning rumination on love", add_special_tokens=True)
每个token的输出都是一个一个768维的向量。
由于这是一个句子分类任务,我们只取第一个向量(与 [CLS] token有关的向量)而忽略其他的 token 向量。
将该向量作为 逻辑回归的输入。
5. 代码(加入图片注释)
环境的配置就不细说了,可以在transformers的github页面查阅
5.1 导入所需的工具包
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklear