知识图谱推理--混合神经网络与分布式表示推理

该论文提出了一种名为R-GCN的关系卷积网络,用于知识图谱的链路预测和实体分类任务。R-GCN通过图结构编码信息,预测缺失的实体属性和三元组。研究中,作者首次展示了GCN框架在关系数据建模上的有效性,并引入了参数共享和稀疏约束技术。此外,他们还展示了通过R-GCN增强因子分解模型性能的方法。
摘要由CSDN通过智能技术生成

原文:Schlichtkrull M, Kipf TN, Bloem P, Berg RVD, Titov I, Welling M. Modeling relational data with graph convolutional networks. arXiv Preprint arXiv: 170306103, 2017.https://link.springer.com/chapter/10.1007/978-3-319-93417-4_38

介绍

知识图谱可以应用于很多方面,比如问答和信息检索。很多知识图谱虽然很大但是仍然不完整,比如Yago, DBPedia 或者 Wikidata。这篇文章应用R-GCNs完成两个任务:链路预测(恢复丢失的事实,即三元组)和实体分类(恢复丢失的实体属性值)。通过邻域结构编码的图预测缺失信息片段。
知识谱图用三元组表示(实体,关系,实体)如 :(Mikhail Baryshnikov, educated at, Vaganova Academy),每个实体(entity)有个类型(type)

图:
图1
为了完成上述任务,这篇论文实现:
实体分类模型:图中每个结点使用softmax分类器,分类器接受RGCN提供的结点表示,并且进行预测标签。
链路预测模型:编码器,RGCN产生实体潜在特征表示;解码器,一个张量因子分解模型利用这些表示来预测标记的边缘,因式分解方法:distmult.

主要贡献

1.是第一个证明GCN框架可以应用于关系数据建模的人,特别是链接预测和实体分类任务。
2.引入了参数共享和加强稀疏约束的技术,并利用它们将R-GCNs应用于具有大量关系的多图。
3.以DistMult为例,作者证明了因子分解模型的性能可以通过在关系图中执行多个信息传播步骤的编码器模型来丰富它们

关系卷积网络

图的符号表示:
2
待续…

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值