知识图谱学习解决推荐中的冷启动问题

【阅读笔记】

希望这篇我能认认真真写完整!!!

文章:MetaKG:Meta-learning on Knowledge Graph for Cold-start Recommendation

动机:

现有的基于KG的推荐方法针对KG中隐藏的长连接用户-项交互的高阶关系/依赖进行建模。然而,它们大多数都忽略了推荐分析的冷启动问题(即用户冷启动和项目冷启动),这限制了它们在涉及新用户或新项目的场景下的性能。基于元学习在稀缺训练样本上的成功,作者提出了一个新的基于元学习的框架MetaKG,该框架包含一个协作意识元学习者和一个知识意识元学习者,用来捕获元用户的偏好和实体知识,用于冷启动推荐

方法:

受元学习的启发,如果我们将每个用户的偏好学习视为一个单独的任务,我们可以将不同用户的偏好学习建模为元学习设置下的不同任务。(每个用户的偏好为一个task任务量可不小啊!!!)

  • The collaborative-aware meta learner:局部聚合每个用户偏好学习任务的用户偏好。 the
  • knowledge-aware meta learner :是跨不同用户偏好学习任务对知识表示进行全局概化。

在两个meta learner的引导下,MetaKG可以有效地捕获高阶协作关系语义表示

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值