【阅读笔记】
希望这篇我能认认真真写完整!!!
文章:MetaKG:Meta-learning on Knowledge Graph for Cold-start Recommendation
动机:
现有的基于KG的推荐方法针对KG中隐藏的长连接用户-项交互的高阶关系/依赖进行建模。然而,它们大多数都忽略了推荐分析的冷启动问题(即用户冷启动和项目冷启动),这限制了它们在涉及新用户或新项目的场景下的性能。基于元学习在稀缺训练样本上的成功,作者提出了一个新的基于元学习的框架MetaKG,该框架包含一个协作意识元学习者和一个知识意识元学习者,用来捕获元用户的偏好和实体知识,用于冷启动推荐。
方法:
受元学习的启发,如果我们将每个用户的偏好学习视为一个单独的任务,我们可以将不同用户的偏好学习建模为元学习设置下的不同任务。(每个用户的偏好为一个task任务量可不小啊!!!)
- The collaborative-aware meta learner:局部聚合每个用户偏好学习任务的用户偏好。 the
- knowledge-aware meta learner :是跨不同用户偏好学习任务对知识表示进行全局概化。
在两个meta learner的引导下,MetaKG可以有效地捕获高阶协作关系和语义表示