tensorflow张量运算

本文详细介绍了张量运算的基础知识,包括加减乘除、幂指对数运算,以及三角函数等。强调了逐元素操作和特定类型的必要性。此外,还提到了常用的张量运算函数如tf.multiply、tf.matmul、tf.reduce_sum等,并解释了它们在求和、求均值、求最大值和最小值等场景的应用。同时,文章指出向量乘法可以通过@运算符实现,并讨论了如何利用换底公式计算不同底数的对数。
摘要由CSDN通过智能技术生成

张量运算
1.加减乘除四则运算
在这里插入图片描述
逐元素操作是指把x中的每一个元素与y中的每一个元素逐个地进行运算

2.,幂指对数运算
在这里插入图片描述
对张量每个元素求平方或平方根也是可以用**这种数学符号的,但是需要注意的是在计算自然对数与求平方根时,张量的类型需要是浮点型,使用整型会报错。

由于TensorFlow中只有以e为底的自然对数,没有提供其它数值为底的对数运算函数,但是我们可以用数学运算中的换底公式来计算其它底数的对数

3.其他运算
在这里插入图片描述
4.三角函数
在这里插入图片描述
5.重载运算
在这里插入图片描述
tf.multiply()张量乘法,可以用*运算符代替,

tf.matmul(),向量乘法,可以用@运算符代替。向量乘法采用的乘法是线性代数中的矩阵之间相乘的运算。

tf.reduce_sum(),求和函数。这个函数可以设定axis参数,以此来指定对某个维度进行求和,如果不设置,就会默认对所有元素进行求和运算

tf.reduce_mean()求均值函数
tf.max()求最大值函数,
tf.min()求最小值函数,
tf.argmax()求最大值索引,
tf.argmin()求最小值索引。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值