[模板]乘法逆元

费马小定理

适用:求某一个数在模意义下的乘法逆元。
如果 ap 互质,那么有 apa 就是p的倍数,所以有 apa(modp) ap11(modp) 。所以只要打一个快速幂就ok了。
code

#include<bits/stdc++.h>
using namespace std;
int n,p;
int power(int x,int k)
{
    int ans=1;
    while(k)
    {
        if(k&1)ans*=x%p;
        ans%=p;
        x=x*x%p;
        k>>=1;
    }
    return ans%p;
}
int main()
{
    scanf("%d%d",&n,&p);
    printf("1\n");
    for(int i=2;i<=n;i++)
    printf("%d\n",power(i,p-2));
    return 0; 
}

线性求法

适用:某一区间的所有的数在模意义下的乘法逆元、求单个逆元(递归求解)。
简单地说就是一个递推。
首先我们有: 111(modp)
然后,我们设 p=k×i+r,r<l,1<i<p 再将这个式子放到 modp 意义下一看: k×i+r0(modp)
再两边同时乘上 i1,r1 可以得到:
k×r1+i10(modp)
移项:
i1=k×r1(modp)
所以:
i1[pi]×(pmodi)1
于是乎我们就可以递推处当前的逆元了:
A[i]=-(p/i)*A[p%i]
然后其实吧,我们还可以通过递归求解,在 O(log2p) 的时间内求出单个逆元。怎么证明时间复杂度呢:由于我们可以发现 pmodi<i/2 ,所以每次的子问题规模减半,最终递归次数也可见了。
code:

#include<bits/stdc++.h>
#define maxn 3000005
using namespace std;
int n;
long long p;
long long ans[maxn];
int main()
{
    scanf("%d%lld",&n,&p);
    ans[1]=1;
    for(int i=2;i<=n;i++)
    ans[i]=(-(p/i)*ans[p%i])%p;
    for(int i=1;i<=n;i++)
    printf("%lld\n",ans[i]>0 ? ans[i] : ans[i]+p);
    return 0; 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值