矩阵

2018.3.25英才班数学老师授课

矩阵专题


行列式

行列式代表一个运算结果和运算过程。
例如一个二阶行列式

[acbd] [ a b c d ]

那么它的运算结果是 adbc a d − b c

三阶行列式

三阶行列式

adgbehcfi [ a b c d e f g h i ]

的运算把它转化为三个二阶行列式的和。
aehfi [ a e f h i ]

+
bfidg [ b f d i g ]
+
dgehc [ c d e g h ]


这三个行列式的求法就是,下方的一个二阶行列式对第一行的常数先进行数乘,再展开。
例如

aehfi [ a e f h i ]

=
[aeahafai] [ a e a f a h a i ]

多阶行列式

和三阶行列式一样,不断降阶即可。

矩阵

矩阵的意义要比行列式丰富很多,矩阵首先表示的不只是一个运算过程和运算结果,它其中的每一个元素都是不可或缺的。
判断两个行列式相等,只要判断最终结果是否相等。
但是判断两个矩阵相等,必须判断每一个元素是否相等。
一个 3×3 3 × 3 的矩阵可以记作:

a1 1a2 1a3 1a1 2a2 2a3 2a1 3a2 3a3 3 [ a 1   1 a 1   2 a 1   3 a 2   1 a 2   2 a 2   3 a 3   1 a 3   2 a 3   3 ]


在这个矩阵中,

a1 ka2 ka3 k [ a 1   k a 2   k a 3   k ]

(k[1,3]) ( k ∈ [ 1 , 3 ] )
被称为列向量。


[ak 1ak 2ak 3] [ a k   1 a k   2 a k   3 ]

(k[1,3]) ( k ∈ [ 1 , 3 ] )
被称为行向量。


特殊地,如果一个矩阵,其中一条对角线上都是1,其他位置都是0,那么就是一个单位矩阵。
例如

100010001 [ 1 0 0 0 1 0 0 0 1 ]

这就是一个单位矩阵

矩阵数乘

没啥好说的,数乘就是实数和矩阵的乘法。
运算法则是把矩阵中每一个元素都乘上这个实数。

矩阵乘法

两个矩阵 A,B A , B 能相乘的条件:A的行数要和B的列数相等。
如果 A A 的规模是m×p
B B 的规模是p×n
那么 A×B A × B 的规模是 m×n m × n
单位矩阵和任意矩阵相乘,还是该矩阵。

m m n阶向量,如果可以表示为: λ1a1+λ2a2++λnan=0 λ 1 a 1 → + λ 2 a 2 → + … + λ n a n → = 0 → ,那么可以称他们为线性相关。
反之称之为线性无关。


一个 n×m n × m 的矩阵,我们可以看作 m m n维向量,如果最多有 r r 个向量线性无关,那么该矩阵的秩即为r

逆矩阵

我们记单位矩阵为 I I .
如果有一个矩阵
A,那么它的逆矩阵记作 A1 A − 1
满足 AA1=I A A − 1 = I

100110111 [ 1 1 1 0 1 1 0 0 1 ]

的逆矩阵为
100110011 [ 1 − 1 0 0 1 − 1 0 0 1 ]

若一个矩阵存在逆矩阵,那么就说这个矩阵是可逆的。

求逆矩阵

如果我们对这矩阵:

1000110011101101 [ 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 ]

首先我们把一个单位矩阵写到这个矩阵的右边:
10001100111011011000010000100001 [ 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 ]

然后开始我们的运算。
如果左右两边两个矩阵某一行相等,那就不用动(例如上述矩阵的三四两行)
如果不相等,那么我们需要做的是将左边的矩阵进行行间相减来获取一个单位矩阵。
比如上述矩阵中第一行减去第二行就是单位矩阵的第一行。
在对左矩阵做这个事情的同时,也对右矩阵进行相同的操作。
10000100001000011000110001100101 [ 1 0 0 0 1 − 1 0 0 0 1 0 0 0 1 − 1 − 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 ]

然后右边由单位矩阵变来的矩阵就是要求的逆矩阵了。
1000110001100101 [ 1 − 1 0 0 0 1 − 1 − 1 0 0 1 0 0 0 0 1 ]

矩阵的幂

An A n 叫做 A A n次幂。

举例

对这个矩阵:

A=λ001λ001λ A = [ λ 1 0 0 λ 1 0 0 λ ]

求平方和立方:
A2=λ2002λλ2012λλ2 A 2 = [ λ 2 2 λ 1 0 λ 2 2 λ 0 0 λ 2 ]

A3=λ3003λ2λ303λ3λ2λ3 A 3 = [ λ 3 3 λ 2 3 λ 0 λ 3 3 λ 2 0 0 λ 3 ]

发现系数刚好是二项式定理的展开。
我们可以预测,
A4=λ4004λ3λ406λ24λ3λ4 A 4 = [ λ 4 4 λ 3 6 λ 2 0 λ 4 4 λ 3 0 0 λ 4 ]

所以我们得出通项公式
An=C0nλn00C1nλn1C0nλn0C2nλn2C1nλn1C0nλn A n = [ C n 0 λ n C n 1 λ n − 1 C n 2 λ n − 2 0 C n 0 λ n C n 1 λ n − 1 0 0 C n 0 λ n ]

求解AX=B

如果给定矩阵 A A 和矩阵B,希望你求出满足 AX=B A X = B 的矩阵 X X
复习我们求逆矩阵的过程:
我们是
I写在 A A 的右边.这里我们把B写在 A A 的右边,先把A变成三角矩阵 A A ′ (就是主对角线左下角全是0),然后变成对角阵 A′′ A ″ (主对角线左下角全是0,而且主对角线全是1)然后进行变换变成 B B <script type="math/tex" id="MathJax-Element-306">B</script>即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值