[国家集训队作业]城市规划 题解

6 篇文章 0 订阅

传送门:洛谷P4841

题意:求 n n n个点简单无向连通图数量。

首先我们设 g ( n ) g(n) g(n)表示 n n n个点的简单无向图(不要求连通)数量,对于每一对点都可以连或者不连边,所以 g ( n ) = 2 C n 2 g(n)=2^{C_n^2} g(n)=2Cn2

f ( n ) f(n) f(n)表示 n n n个点简单无向连通图数量,那么枚举 1 1 1号点所在的连通块至少是多大,可得

g ( n ) = ∑ i = 1 n C n − 1 i − 1 f ( i ) g ( n − i ) g(n)=\sum\limits_{i=1}^nC_{n-1}^{i-1}f(i)g(n-i) g(n)=i=1nCn1i1f(i)g(ni)

考虑怎么求出 f ( n ) f(n) f(n)。将组合数展开

2 C n 2 = ∑ i = 1 n ( n − 1 ) ! f ( i ) 2 C n − i 2 ( i − 1 ) ! ( n − i ) ! 2^{C_n^2}=\sum\limits_{i=1}^n\cfrac{(n-1)!f(i)2^{C_{n-i}^2}}{(i-1)!(n-i)!} 2Cn2=i=1n(i1)!(ni)!(n1)!f(i)2Cni2

移项得到

2 C n 2 ( n − 1 ) ! = ∑ i = 1 n f ( i ) ( i − 1 ) ! 2 C n − i 2 ( n − i ) ! \cfrac{2^{C_n^2}}{(n-1)!}=\sum\limits_{i=1}^n\cfrac{f(i)}{(i-1)!}\cfrac{2^{C_{n-i}^2}}{(n-i)!} (n1)!2Cn2=i=1n(i1)!f(i)(ni)!2Cni2

如果设 a i = { f ( i ) ( i − 1 ) ! , i ≥ 1 0 , i = 0 a_i=\begin{cases}\cfrac{f(i)}{(i-1)!},&i\geq1\\0,&i=0\end{cases} ai=(i1)!f(i),0,i1i=0

b i = 2 C i 2 i ! b_i=\cfrac{2^{C_i^2}}{i!} bi=i!2Ci2

c i = { 2 C i 2 ( i − 1 ) ! , i ≥ 1 0 , i = 0 c_i=\begin{cases}\cfrac{2^{C_i^2}}{(i-1)!},&i\geq1\\0,&i=0\end{cases} ci=(i1)!2Ci2,0,i1i=0

并设它们的生成函数 A ( x ) = ∑ i ≥ 0 a i x i A(x)=\sum\limits_{i\geq0}a_ix^i A(x)=i0aixi B ( x ) = ∑ i ≥ 0 b i x i B(x)=\sum\limits_{i\geq0}b_ix^i B(x)=i0bixi C ( x ) = ∑ i ≥ 0 c i x i C(x)=\sum\limits_{i\geq0}c_ix^i C(x)=i0cixi,那么不难发现

C ( x ) = A ( x ) B ( x ) C(x)=A(x)B(x) C(x)=A(x)B(x)

现在已知 C ( x ) C(x) C(x) B ( x ) B(x) B(x),对 B ( x ) B(x) B(x)求逆再与 C ( x ) C(x) C(x)卷积即可知道 A ( x ) A(x) A(x),最终答案就是 [ x n ] A ( x ) [x^n]A(x) [xn]A(x)

#include <cctype>
#include <cstdio>
#include <climits>
#include <algorithm>

template <typename T> inline void read(T& x) {
    int f = 0, c = getchar(); x = 0;
    while (!isdigit(c)) f |= c == '-', c = getchar();
    while (isdigit(c)) x = x * 10 + c - 48, c = getchar();
    if (f) x = -x;
}
template <typename T, typename... Args>
inline void read(T& x, Args&... args) {
    read(x); read(args...); 
}
template <typename T> void write(T x) {
    if (x < 0) x = -x, putchar('-');
    if (x > 9) write(x / 10);
    putchar(x % 10 + 48);
}
template <typename T> inline void writeln(T x) { write(x); puts(""); }
template <typename T> inline bool chkmin(T& x, const T& y) { return y < x ? (x = y, true) : false; }
template <typename T> inline bool chkmax(T& x, const T& y) { return x < y ? (x = y, true) : false; }

typedef long long LL;

const int maxn = 4e5 + 7;
const LL P = 1004535809, G = 3, Gi = 334845270;

inline LL qpow(LL x, LL k) {
    LL s = 1;
    for (; k; x = x * x % P, k >>= 1)
        if (k & 1) s = s * x % P;
    return s;
}

inline void ntt(LL *A, int *r, int lim, int tp) {
    for (int i = 0; i < lim; ++i)
        if (i < r[i]) std::swap(A[i], A[r[i]]);
    for (int mid = 1; mid < lim; mid <<= 1) {
        LL wn = qpow(tp == 1 ? G : Gi, (P - 1) / (mid << 1));
        for (int j = 0; j < lim; j += mid << 1) {
            LL w = 1;
            for (int k = 0; k < mid; ++k, w = w * wn % P) {
                LL x = A[j + k], y = w * A[j + k + mid] % P;
                A[j + k] = (x + y) % P;
                A[j + k + mid] = (x - y + P) % P;
            }
        }
    }
    if (tp == -1) {
        LL inv = qpow(lim, P - 2);
        for (int i = 0; i < lim; ++i)
            A[i] = A[i] * inv % P;
    }
}

struct Inv {
    LL a[maxn], b[maxn], c[maxn];
    int r[maxn];
    void work(int deg) {
        if (deg == 1) { b[0] = qpow(a[0], P - 2); return; }
        work((deg + 1) >> 1);
        int l = 0, lim = 1;
        while (lim < (deg << 1)) lim <<= 1, ++l;
        for (int i = 0; i < lim; ++i)
            r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
        std::copy(a, a + deg, c);
        std::fill(c + deg, c + lim, 0);
        ntt(c, r, lim, 1);
        ntt(b, r, lim, 1);
        for (int i = 0; i < lim; ++i)
            b[i] = (2ll - c[i] * b[i] % P + P) % P * b[i] % P;
        ntt(b, r, lim, -1);
        std::fill(b + deg, b + lim, 0);
    }
};
Inv inv;

LL fac[maxn], ifac[maxn];
LL b[maxn], c[maxn];
int r[maxn];
int n;

int main() {
    read(n);
    fac[0] = 1;
    for (int i = 1; i <= n; ++i)
        fac[i] = fac[i - 1] * i % P;
    ifac[n] = qpow(fac[n], P - 2);
    for (int i = n - 1; i; --i)
        ifac[i] = ifac[i + 1] * (i + 1) % P;
    ifac[0] = 1;
    b[0] = b[1] = b[2] = 1;
    for (int i = 3; i <= n; ++i)
        b[i] = qpow(2, 1ll * i * (i - 1) / 2) * ifac[i] % P;
    c[0] = 0;
    for (int i = 1; i <= n; ++i)
        c[i] = 1ll * i * b[i];
    std::copy(b, b + n + 1, inv.a);
    inv.work(n + 1);
    std::copy(inv.b, inv.b + n + 1, b);
    int lim = 1, l = 0;
    while (lim <= (n << 1)) lim <<= 1, ++l;
    for (int i = 0; i < lim; ++i)
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    ntt(b, r, lim, 1);
    ntt(c, r, lim, 1);
    for (int i = 0; i < lim; ++i)
        b[i] = b[i] * c[i] % P;
    ntt(b, r, lim, -1);
    writeln(b[n] * fac[n - 1] % P);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值