前-中-后 序遍历

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TraversBTree : MonoBehaviour
{
    //前序遍历
    public void TraversalByPreorder(BTree tree)
    {
        Stack<BTreeNode> stack = new Stack<BTreeNode>();
        BTreeNode t = tree.Root;

        while (t != null || stack.Count > 0)
        {
            while (t != null)
            {
                Debug.LogError(t.Value);
                stack.Push(t);
                t = t.leftChild;
            }
            if (stack.Count > 0)
            {
                t = stack.Pop();
                t = t.rightChild;
            }
        }
    }
    //中序遍历
    public void TraversalByInorder(BTree tree)
    {
        Stack<BTreeNode> stack = new Stack<BTreeNode>();
        BTreeNode t = tree.Root;

        while (t != null || stack.Count > 0)
        {
            while (t != null)
            {
                stack.Push(t);
                t = t.leftChild;
            }
            if (stack.Count > 0)
            {
                t = stack.Pop();
                Debug.LogError(t.Value);
                t = t.rightChild;
            }
        }
    }
    /// <summary>
    /// 后续遍历需要解释下 后序遍历应该是最后访问根 其他顺序不变 那么怎么才能保证我们最后访问到的顺序为 左子树 - 右子树木 - 根呢?
    /// 栈这个结构很符合 我们只需要将 根 - 右子树 - 左子树 按照顺序压入栈,最后出栈就可以正确得到后序遍历结果具体操作如下
    /// </summary>
    /// <param name="tree"></param>
    public void TraversalByPostorder(BTree tree)
    {
        //1号栈负责操作开始时候将根压入 然后弹出压入2号栈底 然后负责开始判断是否有 左子树 和 右子树 先左后右很重要 1号栈 先入左后入右 可以爆炸弹出时候先是右后是左
        //这样在循环最开始时候1号栈 弹出压入到2号栈的就一定是右子树 从而保证了2号栈的进栈顺序为 根 - 右子树 - 左子树 从而保证了结果 
        Stack<BTreeNode> stack1 = new Stack<BTreeNode>();
        //2号栈负责里面顺序为 根 - 右子树 - 左子树 最后出栈打印就是结果 。
        Stack<BTreeNode> stack2 = new Stack<BTreeNode>();
        BTreeNode root = tree.Root;
        stack1.Push(root);
        while (stack1.Count > 0)
        {
            BTreeNode t = stack1.Pop();
            stack2.Push(t);
            if (t.leftChild != null)
            {
                stack1.Push(t.leftChild);
            }
            if (t.rightChild != null)
            {
                stack1.Push(t.rightChild);
            }
        }
        while (stack2.Count > 0)
        {
            Debug.LogError(stack2.Pop().Value);
        }
    }
}

递归构建二叉树: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def build_tree(preorder, inorder): if not preorder or not inorder: return None root_val = preorder[0] root = TreeNode(root_val) index = inorder.index(root_val) root.left = build_tree(preorder[1:index+1], inorder[:index]) root.right = build_tree(preorder[index+1:], inorder[index+1:]) return root ``` 其,preorder 表示遍历列,inorder 表示遍历列。 遍历:根节点 -> 左子树 -> 右子树 遍历:左子树 -> 根节点 -> 右子树 后遍历:左子树 -> 右子树 -> 根节点 遍历的第一个元素即为当树的根节点,然后找到它在遍历的位置,这样就可以确定左子树和右子树的大小,并进行递归构建二叉树。 遍历: ```python def pre_order(root): if not root: return print(root.val, end=' ') pre_order(root.left) pre_order(root.right) ``` 遍历: ```python def in_order(root): if not root: return in_order(root.left) print(root.val, end=' ') in_order(root.right) ``` 后遍历: ```python def post_order(root): if not root: return post_order(root.left) post_order(root.right) print(root.val, end=' ') ``` 示例: ```python preorder = [1, 2, 4, 5, 3, 6, 7] inorder = [4, 2, 5, 1, 6, 3, 7] root = build_tree(preorder, inorder) pre_order(root) # 1 2 4 5 3 6 7 print() in_order(root) # 4 2 5 1 6 3 7 print() post_order(root) # 4 5 2 6 7 3 1 ``` 输出结果为: ``` 1 2 4 5 3 6 7 4 2 5 1 6 3 7 4 5 2 6 7 3 1 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值