高斯马尔科夫定理

一. 高斯马尔科夫定理是什么

高斯马尔科夫定理说:对于线性回归模型,在某些约束条件下,由最小二乘法得到的估计量(估计子),即线性回归模型的系数,是最优线性无偏估计子。也就是说高马解决的问题是线性回归模型,他的作用是给出线性模型的系数估计。

1. 线性回归模型:

                                                                             y=X\beta +\epsilon

其中:

y 是n\times 1的输出列向量(待求的数据);

X 是n \times k的输入矩阵(测量的数据);

\beta 是k \times 1的列向量(待求回归系数);

\epsilon 是k \times 1的误差列向量(测量误差)。

直观的例子,比如根据学生的英语,数学,物理成绩预测他的地理成绩。高马说,最小二乘法估计的回归系数可以最准确地给出预测。由最小二乘得到的系数估计量为(下次来说为什么)(此时的X 和y是测量的已知数据。):

                                                                         \hat{}\beta}=(X^TX)^{-1}X^Ty.

但是要满足如下的假定 (就是定理中的约束):

(1).X 满秩(只有满秩X^TX才可逆);

(2).误差期望为0:E[\epsilon|X]=0;

(3).各向同性协方差矩阵:Var[\epsilon|X]=\sigma^2I;

断言:\hat{\beta} 是最优的线性无偏估计子。

这些假定是说,你测量的数据要是满秩的,测量数据的误差期望得是0,误差的协方差得是各向同性的。只有这样,高马才能给出最优的线性无偏估计子。

 

二. 为什么是他

要说明为什么最小二乘法得到的\hat{\beta} 是最优的线性无偏估计子,需要说明三个问题,即线性无偏最优

1.线性性

\hat{}\beta}=(X^TX)^{-1}X^Ty 关于y 是线性的,故线性性得证。

2.无偏性

无偏即估计量的期望值要和真实的参数值相同。也就是证明: E[\hat{\beta}]=\beta

下面给出\hat{\beta}期望值的推导过程。首先,估计量

\hat{\beta}=(X^TX)^{-1}X^Ty=(X^TX)^{-1}X^T(X\beta+\epsilon )=\beta+(X^TX)^{-1}X^T\epsilon

根据假定(2),两边同时取条件期望,有

E[\hat{\beta}|X]=E[\beta|X]+E[(X^TX)^{-1}X^T\epsilon|X]\\ =\beta+(X^TX)^{-1}X^TE[\epsilon|X]\\ =\beta+0\\ =\beta

利用重期望公式,E[\hat{\beta}]=E[E[\hat{\beta}|X]]=\beta, 从而\hat{\beta}是无偏估计量。无偏性得证。

3. 最优性

最优性是说在所有的线性无偏估计子\widetilde{\beta}中,\hat{\beta}有最小的方差(单变量)或协方差(多元)。因为是多次实验得到的估计量,所以考虑方差是有意义的。

需要证明:Var[\hat{\beta}|X]\leq Var[\widetilde{\beta}|X], 即Var[\hat{\beta}|X]-Var[\widetilde{\beta}|X]\geq 0, 即协方差矩阵(多元)是半正定的。

我们设一般的线性估计子为:\widetilde{\beta}=Cy。其中Ck\times n的矩阵。下面来看该估计子的无偏性。

用最小二乘估计子和一般线性估计子作差,即D=C-(X^TX)^{-1}X^T,那么\widetilde{\beta}可用最小二乘估计子表示:\widetilde{\beta}=Cy=(D+(X^TX)^{-1}X)y=Dy+\hat{\beta}.

两边取条件期望:

E[\widetilde{\beta}|X]=E[Dy+\hat{\beta}|X]\\ =E[Dy|X]+E[\hat{\beta}|X]\\ =E[D(X\beta+\epsilon)|X]+\beta\\ =E[DX\beta|X]+E[D\epsilon|X]+\beta\\ =DXE[\beta|X]+DE[\epsilon|X]+\beta\\ =DX\beta+0+\beta\\ =DX\beta+\beta

注意这里DX都是已知的矩阵,因为D是系数的差,而系数都是常值。\beta也是已知向量。从期望看出,\widetilde{\beta}是无偏估计量的充要条件是DX\beta=0,对任何\beta都成立的话,只能DX=0。下面来看协方差。

Var[\hat{\beta}|X]=Var[Dy+\hat{\beta}|X]\\ =Var[D(X\beta+\epsilon)+\hat{\beta}|X]\\ =Var[DX\beta|X]+Var[D\epsilon|X]+Var[\hat{\beta}|X]\\ =0+DVar[\epsilon|X]D^T+Var[\hat{\beta}|X]\\ =\sigma^2DD^T+Var[\hat{\beta}|X]

这里用到约束(3):Var[\epsilon|X]=\sigma^2I。那么,Var[\hat{\beta}|X]-Var[\widetilde{\beta}|X]=\sigma^2DD^T,由D的构造知,\sigma^2DD^T半正定。从而最优性得证。

 

 

 

 

 

 

 

### 关于高斯-马尔科夫移动模型的速度更新公式 高斯-马尔科夫移动模型(Gaussian-Markov Mobility Model, GMMM)是一种用于描述动态系统的概率模型,广泛应用于目标跟踪、机器人导航等领域。该模型假设对象的状态(如位置和速度)随时间变化的过程是一个马尔可夫链,并且状态转移服从高斯分布。 #### 1. 高斯-马尔科夫移动模型的基本形式 在一个离散时间系统中,设 \( \mathbf{x}_t = [\mathbf{p}_t^\top, \mathbf{v}_t^\top]^\top \) 是时刻 \( t \) 的状态向量,其中 \( \mathbf{p}_t \in \mathbb{R}^d \) 和 \( \mathbf{v}_t \in \mathbb{R}^d \) 分别表示位置和速度。状态转移方程通常写作: \[ \mathbf{x}_{t+1} = A \mathbf{x}_t + B \mathbf{w}_t, \] 其中: - \( A \) 是状态转移矩阵, - \( B \) 是控制输入矩阵, - \( \mathbf{w}_t \sim N(0, Q) \) 是零均值的高斯白噪声,协方差矩阵为 \( Q \)[^4]。 对于二维空间 (\( d=2 \)) 中的位置和速度,\( A \) 和 \( B \) 的典型形式如下: \[ A = \begin{bmatrix} I & \Delta T I \\ 0 & I \end{bmatrix}, B = \begin{bmatrix} \frac{\Delta T^2}{2} I \\ \Delta T I \end{bmatrix}. \] 这里 \( \Delta T \) 表示采样间隔,\( I \) 是单位矩阵[^4]。 #### 2. 速度更新公式的推导 根据上述状态转移方程,速度部分的具体更新公式可以从状态转移矩阵 \( A \) 提取出来。令 \( \mathbf{v}_{t+1} \) 表示下一时刻的速度,则有: \[ \mathbf{v}_{t+1} = \mathbf{v}_t + B_v \mathbf{w}_t. \] 其中 \( B_v = \Delta T I \),因此速度更新公式可以进一步展开为: \[ \mathbf{v}_{t+1} = \mathbf{v}_t + \Delta T \cdot \mathbf{n}_t, \] 这里的 \( \mathbf{n}_t \sim N(0, Q_v) \) 是加到速度上的随机扰动项,其协方差矩阵 \( Q_v \) 来自原始噪声协方差矩阵 \( Q \) 的对应分块。 #### 3. 结合高斯马尔科夫定理的理解 虽然高斯马尔科夫定理主要用于线性回归模型中的最优无偏估计[^2],但在高斯-马尔科夫移动模型中,它同样体现了高斯分布在线性变换下的不变性和数学简洁性。这使得状态转移过程中涉及的概率密度函数易于计算和优化。 --- ### Python 实现示例 以下是基于上述理论的一个简单实现,模拟了速度更新过程: ```python import numpy as np def update_velocity(v_current, dt, noise_cov): """ 更新速度的函数 :param v_current: 当前速度 (numpy array) :param dt: 时间步长 (float) :param noise_cov: 噪声协方差矩阵 (numpy array) :return: 下一时刻的速度 (numpy array) """ n_dim = len(v_current) w_t = np.random.multivariate_normal(mean=np.zeros(n_dim), cov=noise_cov) v_next = v_current + dt * w_t return v_next # 参数设置 dt = 0.1 # 时间步长 noise_cov = np.eye(2) * 0.01 # 噪声协方差矩阵 initial_velocity = np.array([1.0, 0.5]) # 初始速度 # 模拟速度更新 for _ in range(10): # 模拟10次更新 initial_velocity = update_velocity(initial_velocity, dt, noise_cov) print(f"Updated velocity: {initial_velocity}") ``` --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值