NS3中马尔可夫高斯移动模型

ns3::GaussMarkovMobilityModel实现了一个有记忆性的移动模型,其运动轨迹取决于之前的位置和速度。文章介绍了官方使用范例、参数解析和原理解析,包括Bounds、TimeStep、Alpha等关键参数,并展示了如何设置随机速度和方向。
摘要由CSDN通过智能技术生成

ns3::GaussMarkovMobilityModel 马尔可夫高斯移动模型

与其他移动模型不同,马尔可夫高斯移动模型是有记忆性,在任意时间、任意位置点上 的下一步运动轨迹与速度取决于它之前的位置和速度矢量。无 记忆移动模型的特点是在方向和速度上存在非常急剧的和突然的变化。

官方使用范例

MobilityHelper mobility;

mobility.SetMobilityModel ("ns3::GaussMarkovMobilityModel",

"Bounds", BoxValue (Box (0, 150000, 0, 150000, 0, 10000)),

"TimeStep", TimeValue (Seconds (0.5)),

"Alpha", DoubleValue (0.85),

"MeanVelocity", StringValue ("ns3::UniformRandomVariable[Min=800|Max=1200]"),

"MeanDirection", StringValue ("ns3::UniformRandomVariable[Min=0|Max=6.283185307]"),

"MeanPitch", StringValue ("ns3::UniformRandomVariable[Min=0.05|Max=0.05]"),

"NormalVelocity", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.0|Bound=0.0]"),

"NormalDirection", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.2|Bound=0.4]"),

"NormalPitch", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.02|Bound=0.04]"));

mobility.SetPositionAllocator ("ns3::RandomBoxPositionAllocator",

"X", StringValue ("ns3::UniformRandomVariable[Min=0|Max=150000]"),

"Y", StringValue ("ns3::UniformRandomVariable[Min=0|Max=150000]"),

"Z", StringValue ("ns3::UniformRandomVariable[Min=0|Max=10000]"));

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值