ns3::GaussMarkovMobilityModel 马尔可夫高斯移动模型
与其他移动模型不同,马尔可夫高斯移动模型是有记忆性,在任意时间、任意位置点上 的下一步运动轨迹与速度取决于它之前的位置和速度矢量。无 记忆移动模型的特点是在方向和速度上存在非常急剧的和突然的变化。
官方使用范例
MobilityHelper mobility;
mobility.SetMobilityModel ("ns3::GaussMarkovMobilityModel",
"Bounds", BoxValue (Box (0, 150000, 0, 150000, 0, 10000)),
"TimeStep", TimeValue (Seconds (0.5)),
"Alpha", DoubleValue (0.85),
"MeanVelocity", StringValue ("ns3::UniformRandomVariable[Min=800|Max=1200]"),
"MeanDirection", StringValue ("ns3::UniformRandomVariable[Min=0|Max=6.283185307]"),
"MeanPitch", StringValue ("ns3::UniformRandomVariable[Min=0.05|Max=0.05]"),
"NormalVelocity", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.0|Bound=0.0]"),
"NormalDirection", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.2|Bound=0.4]"),
"NormalPitch", StringValue ("ns3::NormalRandomVariable[Mean=0.0|Variance=0.02|Bound=0.04]"));
mobility.SetPositionAllocator ("ns3::RandomBoxPositionAllocator",
"X", StringValue ("ns3::UniformRandomVariable[Min=0|Max=150000]"),
"Y", StringValue ("ns3::UniformRandomVariable[Min=0|Max=150000]"),
"Z", StringValue ("ns3::UniformRandomVariable[Min=0|Max=10000]"));