梯度下降算法Gradient Descent Algorithm

本文通过一个具体的案例,深入浅出地介绍了梯度下降算法的工作原理及其实现过程。从准备训练数据开始,到定义模型、损失函数和梯度函数,再到训练过程中的权重更新,最后展示训练结果和损失函数变化的曲线,全面解析了梯度下降算法在机器学习中的应用。
摘要由CSDN通过智能技术生成

梯度下降算法Gradient Descent Algorithm

梯度

更新梯度

代码

准备训练数据

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

初始化权重

w = 1.0

定义模型

def forward(x):
  return x * w

定义损失函数

def cost(xs, ys):
  cost = 0
  for x, y in zip(xs, ys):
    y_pred = forward(x)
    cost += (y_pred - y) ** 2
  return cost / len(xs)

定义梯度函数

def gradient(xs, ys):
  grad = 0
  for x, y in zip(xs, ys):
    grad += 2 * x * (x * w - y)
  return grad / len(xs)

打印训练前梯度

print('Predict (before training)', 4, forward(4))

定义保存用plt库显示的数据

cost_list = []
epoch_list = []

训练

for epoch in range(100):
  cost_val = cost(x_data, y_data)
  grad_val = gradient(x_data, y_data)
  w -= 0.01 * grad_val
  print('Epoch:', epoch, 'w=', w, 'loss=', cost_val)
  epoch_list.append(epoch)    # 保存epoch数据
  cost_list.append(cost_val)  # 保存cost数据
print('Predict (after training)', 4, forward(4))

训练结果

..........

可见loss最后接近于0,预测结果是4.799

显示曲线

plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三金samkam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值