论文阅读:Deep Learning based Recommender System A Survey and New Perspectives

论文名字

Deep Learning based Recommender System A Survey and New Perspectives

来源

期刊 ACM Computing Surveys

年份

2017-2019 (现在version 7)

作者

SHUAI ZHANG, LINA YAO, AIXIN SUN, YI TAY

核心点

深度学习与推荐算法的综述

阅读日期

2021.3.9

影响因子

 

页数

35

引用数

 

引用

Zhang S , Yao L , Sun A , et al. Deep Learning Based Recommender System: A Survey and New Perspectives[J]. ACM Computing Surveys, 2017.

内容总结

文章的主要工作:

深度学习与推荐算法的综述

文章内容:

1、根据输入数据的类型,推荐模型主要分为协同过滤、基于内容的推荐系统和混合推荐系统[1]

2、[27]在YouTube上提出了一种基于深度学习神经网络的视频推荐算法;[20]提出了一种适用于Google play的应用推荐系统wide & deep models;[113]为雅虎新闻提供了一个基于RNN的新闻推荐系统

3、[138]对协同过滤技术进行了系统综述;[8]提出了一个关于混合推荐系统的综述

4、[7]介绍了[123,153,159]三个作品在这个研究领域都很有影响力。[97]综述了13篇关于深度学习的论文,提出了基于输入形式(使用内容信息的方法和不使用内容信息的方法)和输出形式(评分和排名)对这些模型进行分类的建议。

5、[8,69]混合模型是指集成两种或多种推荐策略的推荐系统

6、类似地,会话或点击日志的顺序结构非常适合由递归/卷积模型提供的归纳偏差[56,143,175]。

7、当处理文本数据时(评论[202],推文[44]等)。

8、为了处理评论,必须执行昂贵的预处理(例如,关键短语抽取、主题建模等)。)而更新的基于深度学习的方法能够端到端地摄取所有文本信息[202]。

9、CNNs[25, 49, 50, 75, 76, 98, 105, 127, 130, 153, 165, 172, 202, 206],[6, 44, 51, 83, 110, 126, 143, 148, 169, 190, 191]

10、在图像方面的推荐算法[2, 14, 25, 49, 50, 84, 98, 105, 112, 165, 172, 179, 191, 192, 197, 206]

11、在视频方面的[14, 17, 27, 83]

12、文本方面:(1)Hash Tags,[44, 110, 118, 158, 182, 183, 193, 209];(2)News,[10, 12, 113, 135, 169, 200];(3)Review texts,[11, 87, 126, 146, 174, 197, 202];(4)Qotes,[82, 141]

 

 

 

 

附录:

 

 

参考文献:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三金samkam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值