论文名字 | Deep Learning based Recommender System A Survey and New Perspectives |
来源 | 期刊 ACM Computing Surveys |
年份 | 2017-2019 (现在version 7) |
作者 | SHUAI ZHANG, LINA YAO, AIXIN SUN, YI TAY |
核心点 | 深度学习与推荐算法的综述 |
阅读日期 | 2021.3.9 |
影响因子 |
|
页数 | 35 |
引用数 |
|
引用 | Zhang S , Yao L , Sun A , et al. Deep Learning Based Recommender System: A Survey and New Perspectives[J]. ACM Computing Surveys, 2017. |
内容总结 | |
文章的主要工作: 深度学习与推荐算法的综述 文章内容: 1、根据输入数据的类型,推荐模型主要分为协同过滤、基于内容的推荐系统和混合推荐系统[1] 2、[27]在YouTube上提出了一种基于深度学习神经网络的视频推荐算法;[20]提出了一种适用于Google play的应用推荐系统wide & deep models;[113]为雅虎新闻提供了一个基于RNN的新闻推荐系统 3、[138]对协同过滤技术进行了系统综述;[8]提出了一个关于混合推荐系统的综述 4、[7]介绍了[123,153,159]三个作品在这个研究领域都很有影响力。[97]综述了13篇关于深度学习的论文,提出了基于输入形式(使用内容信息的方法和不使用内容信息的方法)和输出形式(评分和排名)对这些模型进行分类的建议。 5、[8,69]混合模型是指集成两种或多种推荐策略的推荐系统 6、类似地,会话或点击日志的顺序结构非常适合由递归/卷积模型提供的归纳偏差[56,143,175]。 7、当处理文本数据时(评论[202],推文[44]等)。 8、为了处理评论,必须执行昂贵的预处理(例如,关键短语抽取、主题建模等)。)而更新的基于深度学习的方法能够端到端地摄取所有文本信息[202]。 9、CNNs[25, 49, 50, 75, 76, 98, 105, 127, 130, 153, 165, 172, 202, 206],[6, 44, 51, 83, 110, 126, 143, 148, 169, 190, 191] 10、在图像方面的推荐算法[2, 14, 25, 49, 50, 84, 98, 105, 112, 165, 172, 179, 191, 192, 197, 206] 11、在视频方面的[14, 17, 27, 83] 12、文本方面:(1)Hash Tags,[44, 110, 118, 158, 182, 183, 193, 209];(2)News,[10, 12, 113, 135, 169, 200];(3)Review texts,[11, 87, 126, 146, 174, 197, 202];(4)Qotes,[82, 141]
附录:
参考文献:
|
论文阅读:Deep Learning based Recommender System A Survey and New Perspectives
最新推荐文章于 2022-01-12 16:20:04 发布