相关均衡Correlated Equilibrium的线性规划解法(基于Matlab)

本文介绍了如何将相关均衡问题转化为线性规划问题,并使用MATLAB的linprog函数来求解。内容包括了针对行玩家和列玩家的约束条件,以及额外的限制条件,确保解决方案的可行性。
摘要由CSDN通过智能技术生成

相关均衡Correlated Equilibrium的Matlab解法


Consider the following normal form game G G G. Your task is to find the correlated equilibrium that maximizes the sum of players’ utilities, using Linear Programming in MATLAB. In your report, you need to present the equilibrium that you have computed, the linear program that you are solving (which should include the equilibrium conditions that are satisfied), and a screenshot of your MATLAB input AND output. Use the following ordering of variables when constructing your MATLAB input:
p X A ; p X B ; p X C ; p Y A ; p Y B ; p Y C ; p Z A ; p Z B ; p Z C p_{XA}; p_{XB}; p_{XC}; p_{Y A}; p_{Y B}; p_{Y C}; p_{ZA}; p_{ZB}; p_{ZC} pXA;pXB;pXC;pYA;pYB;pYC;pZA;pZB;pZC.

A B C
X 10,5 0,6 0,0
Y 7,7 0,0 6,0
Z 0,0 7,7 5,10

We can formulate the correlated equilibrium as the form below, wherein v i j v_{ij} vij is the total payoff for the corresponding strategy. Then we can use the linprog in MATLAB to solve the above LP.

max ⁡ ∑ i ∈ { X , Y , Z } ∑ j ∈ { A , B , C } v i , j ⋅ p i , j s . t . r o w   p l a y e r : 10 p X A + 0 p X B + 0 p X C ≥ 7 p X A + 0 p X B + 6 p X C 10 p X A + 0 p X B + 0 p X C ≥ 0 p X A + 7 p X B + 5 p X C 7 p Y A + 0 p Y B + 6 p Y C ≥ 10 p Y A + 0 p Y B + 0 p Y C 7 p Y A + 0 p Y B + 6 p Y C ≥ 0 p Y A + 7 p Y B + 5 p Y C 0 p Z A + 7 p Z B + 5 p Z C ≥ 10 p Z A + 0 p Z B + 0 p Z C 0 p Z A + 7 p Z B + 5 p Z C ≥ 7 p Z A + 0 p Z B + 6 p Z C c o l u m n   p l a y e r : 5 p X A + 7 p Y A + 0 p Z A ≥ 6 p X A + 0 p Y A + 7 p Z A 5 p X A + 7 p Y A + 0 p Z A ≥ 0 p X A + 0 p Y A + 10 p Z A 6 p X B + 0 p Y B + 7 p Z B ≥ 5 p X B + 7 p Y B + 0 p Z B 6 p X B + 0 p Y B + 7 p Z B ≥ 0 p X B + 0 p Y B + 10 p Z B 0 p X C + 0 p Y C + 10 p Z C ≥ 5 p X C + 7 p Y C + 0 p Z C 0 p X C + 0 p Y C + 10 p Z C ≥ 6 p X C + 0 p Y C + 7 p Z C o t h e r   c o n s t r a i n t s : ∑ i ∈ { X , Y , Z } ∑ j ∈ { A , B , C } p i , j = 1 0 ≤ p i , j ≤ 1 ∀ i ∈ { X , Y , Z } , j ∈ { A , B , C } \max \sum_{i\in\{X,Y,Z\}}\sum_{j\in\{A,B,C\}} v_{i,j}\cdot p_{i,j}\\ s.t. \quad row \ player:\\ 10p_{XA}+0p_{XB}+0p_{XC} \ge 7p_{XA}+0p_{XB}+6p_{XC}\\ 10p_{XA}+0p_{XB}+0p_{XC} \ge 0p_{XA}+7p_{XB}+5p_{XC}\\ 7p_{YA}+0p_{YB}+6p_{YC} \ge 10p_{YA}+0p_{YB}+0p_{YC}\\ 7p_{YA}+0p_{YB}+6p_{YC} \ge 0p_{YA}+7p_{YB}+5p_{YC}\\ 0p_{ZA}+7p_{ZB}+5p_{ZC} \ge 10p_{ZA}+0p_{ZB}+0p_{ZC}\\ 0p_{ZA}+7p_{ZB}+5p_{ZC} \ge 7p_{ZA}+0p_{ZB}+6p_{ZC}\\ column \ player:\\ 5p_{XA}+7p_{YA}+0p_{ZA} \ge 6p_{XA}+0p_{YA}+7p_{ZA}\\ 5p_{XA}+7p_{YA}+0p_{ZA} \ge 0p_{XA}+0p_{YA}+10p_{ZA}\\ 6p_{XB}+0p_{YB}+7p_{ZB} \ge 5p_{XB}+7p_{YB}+0p_{ZB}\\ 6p_{XB}+0p_{YB}+7p_{ZB} \ge 0p_{XB}+0p_{YB}+10p_{ZB}\\ 0p_{XC}+0p_{YC}+10p_{ZC} \ge 5p_{XC}+7p_{YC}+0p_{ZC}\\ 0p_{XC}+0p_{YC}+10p_{ZC} \ge 6p_{XC}+0p_{YC}+7p_{ZC}\\ other \ constraints:\\ \sum_{i\in\{X,Y,Z\}}\sum_{j\in\{A,B,C\}} p_{i,j}=1\\ 0\le p_{i,j} \le 1 \quad \forall i\in\{X,Y,Z\},j\in\{A,B,C\} maxi{ X,Y,Z}j{ A,B,C}vi,jpi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值