本原BCH码


参考书籍《信息论与编码》、《差错控制编码》。

性质

n = 2 m − 1 n − k ≤ m t d m i n ≥ 2 t + 1 n=2^m-1\\ n-k≤mt\\ d_{min}≥2t+1 n=2m1nkmtdmin2t+1
式中, m ≥ 3 m≥3 m3,纠错能力 t < 2 m − 1 t<2^m-1 t2m1
基本特征为其生成多项式 g ( x ) g(x) g(x)包含 2 t 2t 2t个连续幂次的根。

编译码步骤

编码

  1. 由关系 n = 2 m − 1 n=2^m-1 n=2m1算出 m m m,查表找 m m m次本原多项式 P ( x ) P(x) P(x),用它产生一个 G F ( 2 m ) GF(2^m) GF(2m)扩域。
  2. 以本原多项式 P ( x ) P(x) P(x)的根为本原元 α α α,分别计算 2 t 2t 2t个连续幂次 α α α α 2 α^2 α2,…, α 2 t α^{2t} α2t所对应的二元域上的最小多项式 m 1 ( x ) m_1(x) m1(x) m 2 ( x ) m_2(x) m2(x),…, m 2 t ( x ) m_{2t}(x) m2t(x)
  3. 计算这些最小多项式的最小公倍数,得到生成多项式为
    g ( x ) = L C M [ m 1 ( x ) , m 2 ( x ) , … , m 2 t ( x ) ] g(x)=LCM[m_1(x),m_2(x),…,m_{2t}(x)] g(x)=LCM[m1(x),m2(x),,m2t(x)]
    如果 i i i是偶数,则可表示为 i = i ′ 2 l i=i'2^l i=i2l,其中 i ′ i' i是奇数,且 l ≥ 1 l≥1 l1。由于 α i = ( α i ′ ) 2 l α^i=(α^{i'})^{2^l} αi=(αi)2l α i ′ α^{i'} αi的共轭元,因此 α i α^i αi α i ′ α^{i'} αi具有相同的最小多项式,即 m i ( x ) = m i ′ ( x ) m_i(x)=m_{i'}(x) mi(x)=mi(x),在上式中, α α α的每个偶次幂都与前面某个 α α α的奇次幂具有相同的最小多项式,因此可简化为:
    g ( x ) = L C M [ m 1 ( x ) , m 3 ( x ) , … , m 2 t − 1 ( x ) ] g(x)=LCM[m_1(x),m_3(x),…,m_{2t-1}(x)] g(x)=LCM[m1(x),m3(x),,m2t1(x)]
  4. 待编码信息多项式 u ( x ) u(x) u(x)
    u ( x ) = u 0 x k − 1 + u 1 k − 2 + … + u k − 1 u(x)=u_0x^{k-1}+u_1^{k-2}+…+u_{k-1} u(x)=u0xk1+u1k2++uk1
    将待编码信息多项式升 x n − k x^{n-k} xnk位后除以 g ( x ) g(x) g(x),获得余式 r ( x ) r(x) r(x)
    联合 r ( x ) r(x) r(x) x n − k u ( x ) x^{n-k}u(x) xnku(x),获得码多项式 x n − k u ( x ) + r ( x ) x^{n-k}u(x)+r(x) xnku(x)+r(x)

译码

  1. 由接收多项式 r ( x ) r(x) r(x)计算校正子 S = ( S 1 , S 2 , … , S 2 t ) S=(S_1,S_2,…,S_{2t}) S=(S1,S2,,S2t)
  2. 由校正子分量 S 1 , S 2 , … , S 2 t S_1,S_2,…,S_{2t} S1,S2,,S2t确定错误位置多项式 σ ( x ) σ(x) σ(x)。(Berlekamp迭代算法)
  3. 通过求解 σ ( x ) σ(x) σ(x)的根,确定错误位置数 β 1 , β 2 , … , β v β_1,β_2,…,β_v β1,β2,,βv,并纠正 r ( x ) r(x) r(x)中的错误。

Berlekamp迭代算法

牛顿恒等式

{ S 1 = α j 1 + α j 2 + … α j v S 2 = ( α j 1 ) 2 + ( α j 2 ) 2 + … ( α j v ) 2 S 3 = ( α j 1 ) 3 + ( α j 2 ) 3 + … ( α j v ) 3 … S 2 t = ( α j 1 ) 2 t + ( α j 2 ) 2 t + … ( α j v ) 2 t \begin{cases} S_1=α^{j_1}+α^{j_2}+…α^{j_v}\\ S_2=(α^{j_1})^2+(α^{j_2})^2+…(α^{j_v})^2\\ S_3=(α^{j_1})^3+(α^{j_2})^3+…(α^{j_v})^3\\ …\\ S_{2t}=(α^{j_1})^{2t}+(α^{j_2})^{2t}+…(α^{j_v})^{2t} \end{cases} S1=αj1+αj2+αjvS2=(αj1)2+(αj2)2+(αjv)2S3=(αj1)3+(αj2)3+(αjv)3S2t=(αj1)2t+(αj2)2t+(αjv)2t
β l = α j l β_l=α^{j_l} βl=αjl,该元素称为错误位置数,则有
{ S 1 = β 1 + β 2 + … β v S 2 = β 1 2 + β 2 2 + … β v 2 S 3 = β 1 3 + β 2 3 + … β v 3 … S 2 t = β 1 2 t + β 2 2 t + … β v 2 t \begin{cases} S_1=β_1+β_2+…β_v\\ S_2=β_1^2+β_2^2+…β_v^2\\ S_3=β_1^3+β_2^3+…β_v^3\\ …\\ S_{2t}=β_1^{2t}+β_2^{2t}+…β_v^{2t} \end{cases} S1=β1+β2+βvS2=β12+β22+βv2S3=β13+β23+βv3S2t=β12t+β22t+βv2t
定义以下多项式
σ ( x ) ≜ ( 1 + β 1 x ) ( 1 + β 2 x ) … ( 1 + β v x ) = σ 0 + σ 1 x + σ 2 x 2 + … + σ v x v σ(x)\triangleq(1+β_1x)(1+β_2x)…(1+β_vx)\\=σ_0+σ_1x+σ_2x^2+…+σ_vx^v σ(x)(1+β1x)(1+β2x)(1+βvx)=σ0+σ1x+σ2x2++σvxv
σ ( x ) σ(x) σ(x)的根是错误位置数的倒数 β 1 − 1 β_1^{-1} β11 β 2 − 1 β_2^{-1} β21,…, β v − 1 β_v^{-1} βv1 σ ( x ) σ(x) σ(x)被称为错误位置多项式,其系数与错误位置数的关系如下:
{ σ 0 = 1 σ 1 = β 1 + β 2 + … + β v σ 2 = β 1 β 2 + β 2 β 3 + … + β v − 1 β v … σ v = β 1 β 2 … β v \begin{cases} σ_0=1\\ σ_1=β_1+β_2+…+β_v\\ σ_2=β_1β_2+β_2β_3+…+β_{v-1}β_v\\ …\\ σ_v=β_1β_2…β_v \end{cases} σ0=1σ1=β1+β2++βvσ2=β1β2+β2β3++βv1βvσv=β1β2βv
σ i σ_i σi β l β_l βl的初等对称函数, σ i σ_i σi与校正子之间的关系由如下牛顿恒等式确实:
{ S 1 + σ 1 = 0 S 2 + σ 1 S 1 + 2 σ 2 = 0 S 3 + σ 1 S 2 + σ 2 S 1 + 3 σ 3 = 0 … S v + σ 1 S v − 1 + … + σ v − 1 S 1 + v σ v = 0 S v + 1 + σ 1 S v + … + σ v − 1 S 2 + σ v S 1 = 0 \begin{cases}S_1+σ_1=0\\ S_2+σ_1S_1+2σ_2=0\\ S_3+σ_1S_2+σ_2S_1+3σ_3=0\\ …\\ S_{v}+σ_1S_{v-1}+…+σ_{v-1}S_1+vσ_v=0\\ S_{v+1}+σ_1S_{v}+…+σ_{v-1}S_2+σ_{v}S_1=0\end{cases} S1+σ1=0S2+σ1S1+2σ2=0S3+σ1S2+σ2S1+3σ3=0Sv+σ1Sv1++σv1S1+vσv=0Sv+1+σ1Sv++σv1S2+σvS1=0
在二进制情况下,由于 1 + 1 = 0 1+1=0 1+1=0,有
i σ i = { σ i , i 为 奇 数 0 , i 为 偶 数 iσ_i=\begin{cases}σ_i,i为奇数\\0,i为偶数\end{cases} iσi={σii0i

Berlekamp迭代
  1. 求最低次数多项式 σ ( 1 ) ( x ) σ^{(1)}(x) σ(1)(x),使它的系数满足第一个牛顿恒等式 S 1 + σ 1 = 0 S_1+σ_1=0 S1+σ1=0
  2. 检验 σ ( 1 ) ( x ) σ^{(1)}(x) σ(1)(x)是否满足第二个牛顿恒等式 S 2 + σ 1 S 1 + 2 σ 2 = 0 S_2+σ_1S_1+2σ_2=0 S2+σ1S1+2σ2=0
    1. 满足,则取 σ ( 2 ) ( x ) = σ ( 1 ) ( x ) σ^{(2)}(x)=σ^{(1)}(x) σ(2)(x)=σ(1)(x)
    2. 不满足,则对 σ ( 1 ) ( x ) σ^{(1)}(x) σ(1)(x)增加一个修正项构成 σ ( 2 ) ( x ) σ^{(2)}(x) σ(2)(x),使 σ ( 2 ) ( x ) σ^{(2)}(x) σ(2)(x)具有最低次数且其系数满足前两个牛顿恒等式。
  3. 检验 σ ( 2 ) ( x ) σ^{(2)}(x) σ(2)(x)是否满足第三个牛顿恒等式 S 3 + σ 1 S 2 + σ 2 S 1 + 3 σ 3 = 0 S_3+σ_1S_2+σ_2S_1+3σ_3=0 S3+σ1S2+σ2S1+3σ3=0
    1. 满足,则取 σ ( 3 ) ( x ) = σ ( 2 ) ( x ) σ^{(3)}(x)=σ^{(2)}(x) σ(3)(x)=σ(2)(x)
    2. 不满足,则对 σ ( 2 ) ( x ) σ^{(2)}(x) σ(2)(x)增加一个修正项构成 σ ( 3 ) ( x ) σ^{(3)}(x) σ(3)(x),使 σ ( 3 ) ( x ) σ^{(3)}(x) σ(3)(x)具有最低次数且其系数满足前两个牛顿恒等式。
  4. 迭代一直进行到获得 σ ( 2 t ) ( x ) σ^{(2t)}(x) σ(2t)(x) σ ( 2 t ) ( x ) σ^{(2t)}(x) σ(2t)(x)即错误位置多项式 σ ( x ) σ(x) σ(x)。若接收多项式 r ( x ) r(x) r(x)中错误数目为 t t t或小于 t t t,则 σ ( x ) σ(x) σ(x)将产生正确的错误模式。
具体步骤
μ μ μ σ μ ( x ) σ^{μ}(x) σμ(x) d μ d_μ dμ l μ l_μ lμ μ − l μ μ-l_μ μlμ ρ ρ ρ
− 1 -1 1 1 1 1 1 1 1 0 0 0 − 1 -1 1
0 0 0 1 1 1 S 1 S_1 S1
0 0 0 0 0 0
1 1 1
2 2 2
……
2 t 2t 2t

μ μ μ步所确定的最低次数多项式 σ ( μ ) ( x ) σ^{(μ)}(x) σ(μ)(x)
σ ( μ ) ( x ) = 1 + σ 1 ( μ ) x + σ 2 ( μ ) x 2 + … + σ l μ ( μ ) x l μ σ^{(μ)}(x)=1+σ^{(μ)}_1x+σ^{(μ)}_2x^2+…+σ^{(μ)}_{l_μ}x^{l_μ} σ(μ)(x)=1+σ1(μ)x+σ2(μ)x2++σlμ(μ)xlμ
μ μ μ步差值 d μ d_μ dμ
d μ = S μ + 1 + σ 1 ( μ ) S μ + σ 2 ( μ ) S μ − 1 + … + σ l μ ( μ ) S μ + 1 − l μ d_μ=S_{μ+1}+σ^{(μ)}_1S_μ+σ^{(μ)}_2S_{μ-1}+…+σ^{(μ)}_{l_μ}S_{μ+1-l_μ} dμ=Sμ+1+σ1(μ)Sμ+σ2(μ)Sμ1++σlμ(μ)Sμ+1lμ
l ρ l_ρ lρ—— σ ( ρ ) ( x ) σ^{(ρ)}(x) σ(ρ)(x)的次数

  1. d μ = 0 d_μ=0 dμ=0,则 σ ( μ + 1 ) ( x ) = σ ( μ ) ( x ) σ^{(μ+1)}(x)=σ^{(μ)}(x) σ(μ+1)(x)=σ(μ)(x)
  2. d μ ≠ 0 d_μ≠0 dμ=0,则寻找第μ行之前的另一行ρ, d ρ ≠ 0 d_ρ≠0 dρ=0 ρ − l ρ ρ-l_ρ ρlρ具有最大值。则有
    σ ( μ + 1 ) ( x ) = σ ( μ ) ( x ) + d μ d ρ − 1 x ( μ − ρ ) σ ( ρ ) ( x )   l μ + 1 = m a x ( l μ , l ρ + μ + ρ ) σ^{(μ+1)}(x)=σ^{(μ)}(x)+d_μd_ρ^{-1}x^{(μ-ρ)}σ^{(ρ)}(x)\\\ \\ l_{μ+1}=max(l_μ,l_ρ+μ+ρ) σ(μ+1)(x)=σ(μ)(x)+dμdρ1x(μρ)σ(ρ)(x) lμ+1=max(lμ,lρ+μ+ρ)

例.BCH(15,5)编译

编码

在这里插入图片描述

  1. 码长 n = 15 n=15 n=15,信息位 k = 5 k=5 k=5 2 m − 1 = 15 → m = 4 2^m-1=15→m=4 2m1=15m=4 t = 3 t=3 t=3 d m i n ≥ 7 d_{min}≥7 dmin7。由表得 m m m次本原多项式 P ( x ) = 1 + x + x 4 P(x)=1+x+x^4 P(x)=1+x+x4,产生扩域 G F ( 2 4 ) GF(2^4) GF(24)
  2. α α α G F ( 2 4 ) GF(2^4) GF(24)的本原元,域中元素及最小多项式计算结果如下表,可知 α α α α 3 α^3 α3 α 5 α^5 α5的最小多项式分别为
    m 1 ( x ) = 1 + x + x 4 m 3 ( x ) = 1 + x + x 2 + x 3 + x 4 m 5 ( x ) = 1 + x + x 2 m_1(x)=1+x+x^4\\ m_3(x)=1+x+x^2+x^3+x^4\\ m_5(x)=1+x+x^2 m1(x)=1+x+x4m3(x)=1+x+x2+x3+x4m5(x)=1+x+x2
幂表示多项式表示4维向量表示最小多项式
00 0000 0000 0000 x x x
11 0001 0001 0001 x + 1 x+1 x+1
α α α α α α 0010 0010 0010 x 4 + x + 1 x^4+x+1 x4+x+1
α 2 α^2 α2 α 2 α^2 α2 0100 0100 0100 x 4 + x + 1 x^4+x+1 x4+x+1
α 3 α^3 α3 α 3 α^3 α3 1000 1000 1000 x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1
α 4 α^4 α4 1 + α 1+α 1+α 0011 0011 0011 x 4 + x + 1 x^4+x+1 x4+x+1
α 5 α^5 α5 α + α 2 α+α^2 α+α2 0110 0110 0110 x 2 + x + 1 x^2+x+1 x2+x+1
α 6 α^6 α6 α 2 + α 3 α^2+α^3 α2+α3 1100 1100 1100 x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1
α 7 α^7 α7 1 + α + α 3 1+α+α^3 1+α+α3 1011 1011 1011 x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1
α 8 α^8 α8 1 + α 2 1+α^2 1+α2
0101 0101 0101 x 4 + x + 1 x^4+x+1 x4+x+1
α 9 α^9 α9 α + α 3 α+α^3 α+α3 1010 1010 1010 x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1
α 10 α^{10} α10 1 + α + α 2 1+α+α^2 1+α+α2 0111 0111 0111 x 2 + x + 1 x^2+x+1 x2+x+1
α 11 α^{11} α11 α + α 2 + α 3 α+α^2+α^3 α+α2+α3 1110 1110 1110 x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1
α 12 α^{12} α12 1 + α + α 2 + α 3 1+α+α^2+α^3 1+α+α2+α3 1111 1111 1111 x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1
α 13 α^{13} α13 1 + α 2 + α 3 1+α^2+α^3 1+α2+α3 1101 1101 1101 x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1
α 14 α^{14} α14 1 + α 3 1+α^3 1+α3 1001 1001 1001 x 4 + x 3 + 1 x^4+x^3+1 x4+x3+1
  1. 生成多项式 g ( x ) g(x) g(x)
    g ( x ) = L C M { m 1 ( x ) , m 3 ( x ) , m 5 ( x ) } = ( 1 + x + x 4 ) ( 1 + x + x 2 + x 3 + x 4 ) ( 1 + x + x 2 ) = 1 + x + x 2 + x 4 + x 5 + x 8 + x 10 g(x)=LCM\{m_1(x),m_3(x),m_5(x)\}\\=(1+x+x^4)(1+x+x^2+x^3+x^4)(1+x+x^2)\\ =1+x+x^2+x^4+x^5+x^8+x^{10} g(x)=LCM{m1(x),m3(x),m5(x)}=(1+x+x4)(1+x+x2+x3+x4)(1+x+x2)=1+x+x2+x4+x5+x8+x10
  2. 假设发送码字 ( 10010 ) (10010) (10010),则待编码信息多项式升 x n − k x^{n-k} xnk后为
    x n − k m ( x ) = x 15 − 5 ( x 4 + x ) = x 14 + x 11 x^{n-k}m(x)=x^{15-5}(x^4+x)=x^{14}+x^{11} xnkm(x)=x155(x4+x)=x14+x11
    g ( x ) g(x) g(x) x n − k m ( x ) x^{n-k}m(x) xnkm(x)得余式 r ( x ) = x 7 + x 6 + x 5 + x 4 + x 2 + 1 r(x)=x^7+x^6+x^5+x^4+x^2+1 r(x)=x7+x6+x5+x4+x2+1
    联合 x n − k m ( x ) x^{n-k}m(x) xnkm(x) r ( x ) r(x) r(x)得码多项式 x n − k m ( x ) + r ( x ) = x 14 + x 11 + x 7 + x 6 + x 5 + x 4 + x 2 + 1 x^{n-k}m(x)+r(x)=x^{14}+x^{11}+x^7+x^6+x^5+x^4+x^2+1 xnkm(x)+r(x)=x14+x11+x7+x6+x5+x4+x2+1,码字为 ( 100100011110101 ) (100100011110101) (100100011110101)

译码&纠错

计算校正子

假设发送码字 ( 100100011110101 ) (100100011110101) (100100011110101),接受码字为 r = ( 101100111100101 ) r=(101100111100101) r=(101100111100101),则有接收码字
r ( x ) = x 14 + x 12 + x 11 + x 8 + x 7 + x 6 + x 5 + x 2 + 1 r(x)=x^{14}+x^{12}+x^{11}+x^8+x^7+x^6+x^5+x^2+1 r(x)=x14+x12+x11+x8+x7+x6+x5+x2+1
由上表可知 α α α α 2 α^2 α2 α 4 α^4 α4的最小多项式为 m 1 ( x ) = m 2 ( x ) = m 4 ( x ) = x 4 + x + 1 m_1(x)=m_2(x)=m_4(x)=x^4+x+1 m1(x)=m2(x)=m4(x)=x4+x+1 α 3 α^3 α3 α 6 α^6 α6的最小多项式为 m 3 ( x ) = m 6 ( x ) = x 4 + x 3 + x 2 + x + 1 m_3(x)=m_6(x)=x^4+x^3+x^2+x+1 m3(x)=m6(x)=x4+x3+x2+x+1 α 5 α^5 α5的最小多项式为 m 5 ( x ) = x 2 + x + 1 m_5(x)=x^2+x+1 m5(x)=x2+x+1。用 r ( x ) r(x) r(x)分别除以 m 1 ( x ) — m 6 ( x ) m_1(x)—m_6(x) m1(x)m6(x)得余式:
b 1 ( x ) = b 2 ( x ) = b 4 ( x ) = x 3 + 1 b 3 ( x ) = b 6 ( x ) = x + 1 b 5 ( x ) = x 2 + x + 1 b_1(x)=b_2(x)=b_4(x)=x^3+1\\ b_3(x)=b_6(x)=x+1\\ b_5(x)=x^2+x+1 b1(x)=b2(x)=b4(x)=x3+1b3(x)=b6(x)=x+1b5(x)=x2+x+1
α , α 2 , α 4 α,α^2,α^4 αα2α4代入 b 1 ( x ) b_1(x) b1(x)得到校正子分量: S 1 = α 14 , S 2 = α 13 , S 4 = α 11 S_1=α^{14},S_2=α^{13},S_4=α^{11} S1=α14S2=α13S4=α11
α 3 , α 6 α^3,α^6 α3α6代入 b 3 ( x ) b_3(x) b3(x)得到校正子分量: S 3 = α 14 , S 6 = α 13 S_3=α^{14},S_6=α^{13} S3=α14S6=α13
α 5 α^5 α5代入 b 5 ( x ) b_5(x) b5(x)得到校正子分量: S 5 = 0 S_5=0 S5=0
S = ( S 1 , S 2 , S 3 , S 4 , S 5 , S 6 ) = ( α 14 , α 13 , α 14 , α 11 , 0 , α 13 ) \mathbf S=(S_1,S_2,S_3,S_4,S_5,S_6)=(α^{14},α^{13},α^{14},α^{11},0,α^{13}) S=(S1,S2,S3,S4,S5,S6)=(α14,α13,α14,α11,0,α13)

确定错误位置多项式

应用前述Berlekamp迭代算法,得错误位置多项式为
σ ( x ) = 1 + α 14 x + α 7 x 2 + α 9 x 3 σ(x)=1+α^{14}x+α^7x^2+α^9x^3 σ(x)=1+α14x+α7x2+α9x3
迭代过程如下表

μ μ μ σ μ ( x ) σ^{μ}(x) σμ(x) d μ d_μ dμ l μ l_μ lμ μ − l μ μ-l_μ μlμ ρ ρ ρ
− 1 -1 1 1 1 1 1 1 1 0 0 0 − 1 -1 1
0 0 0 1 1 1 α 14 α^{14} α14
0 0 0 0 0 0 − 1 -1 1
1 1 1 1 + α 14 x 1+α^{14}x 1+α14x
0 0 0 1 1 1 0 0 0
2 2 2 1 + α 14 x 1+α^{14}x 1+α14x α 5 α^5 α5 1 1 1 1 1 10
3 3 3 1 + α 14 x + α 6 x 2 1+α^{14}x+α^6x^2 1+α14x+α6x2 0 0 0 2 2 2 1 1 1
4 4 4 1 + α 14 x + α 6 x 2 1+α^{14}x+α^6x^2 1+α14x+α6x2 1 1 1 2 2 2 2 2 22
5 5 5 1 + α 14 x + α 7 x 2 + α 9 x 3 1+α^{14}x+α^7x^2+α^9x^3 1+α14x+α7x2+α9x3
0 0 0 3 3 3 2 2 2
6 6 6 1 + α 14 x + α 7 x 2 + α 9 x 3 1+α^{14}x+α^7x^2+α^9x^3 1+α14x+α7x2+α9x3

纠错

求得错误位置多项式 σ ( x ) = 1 + α 14 x + α 7 x 2 + α 9 x 3 σ(x)=1+α^{14}x+α^7x^2+α^9x^3 σ(x)=1+α14x+α7x2+α9x3的根为 α 11 , α 7 , α 3 α^{11},α^7,α^3 α11α7α3,得错误模式为
e ( x ) = x 12 + x 8 + x 4 e(x)=x^{12}+x^8+x^4 e(x)=x12+x8+x4
与接收多项式 r ( x ) r(x) r(x)相加得
r ( x ) + e ( x ) = x 14 + x 11 + x 7 + x 6 + x 5 + x 4 + x 2 + 1 r(x)+e(x)=x^{14}+x^{11}+x^7+x^6+x^5+x^4+x^2+1 r(x)+e(x)=x14+x11+x7+x6+x5+x4+x2+1
得码字 ( 100100011110101 ) (100100011110101) (100100011110101)

  • 3
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值