【日志异常检测】论文阅读

【2023软件顶会ccf-a】Heterogeneous Anomaly Detection for Software Systems via Semi-supervised Cross-modal Attention

日志相关信息

  • 监督学习:日志标签获取耗时耗力,是监督学习的瓶颈。无监督学习:人为监督少,会出现不准确的情况。
  • 采用FastText和Transformer对日志的词法语义和顺序依赖性建模
  • 半监督过程:首先,我们应用一些标记数据来训练初始模型,然后通过当前训练模型对剩余的未标记数据进行伪标记。其次,使用具有高置信度的标记和伪标记数据来更新模型,直到收敛。
  • 日志模型:Drain提取模板,FastText语义表示,向量输入模型:两个Transformer的encoder层。
  • 论文中有日志的处理和提取过程。

【2020 log2vec|ccf-c】A Semantic-aware Representation Framework for Online Log Analysis

  • 解决语义问题

在这里插入图片描述
在这里插入图片描述
资料链接: 日志异常检测资料汇总

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值