【2023软件顶会ccf-a】Heterogeneous Anomaly Detection for Software Systems via Semi-supervised Cross-modal Attention
日志相关信息
- 监督学习:日志标签获取耗时耗力,是监督学习的瓶颈。无监督学习:人为监督少,会出现不准确的情况。
- 采用FastText和Transformer对日志的词法语义和顺序依赖性建模
- 半监督过程:首先,我们应用一些标记数据来训练初始模型,然后通过当前训练模型对剩余的未标记数据进行伪标记。其次,使用具有高置信度的标记和伪标记数据来更新模型,直到收敛。
- 日志模型:Drain提取模板,FastText语义表示,向量输入模型:两个Transformer的encoder层。
- 论文中有日志的处理和提取过程。
【2020 log2vec|ccf-c】A Semantic-aware Representation Framework for Online Log Analysis
- 解决语义问题
资料链接: 日志异常检测资料汇总