匈牙利算法又被称为增广路算法。
什么是增广路?
对于任意一组匹配S,属于S的边被称为匹配边,不属于S的被称为非匹配边。如果二分图中存在一条连接两个非匹配点的路径path,使得非匹配边与匹配边在path上交替出现,那么我们称path是匹配S的一条增广路。
增广路的性质:
1.长度为奇数
2.路径上第1、3、5...、len条边是非匹配边,第2、4、6...、len-1条边是匹配边。
正因为以上性质,我们可以把增广路上所有边的状态取反,则匹配+1。
进一步得出了结论:二分图的一组匹配S是最大匹配,当且仅当此时不存在增广路。
匈牙利算法的主要过程:
1、设S=∅,即所有边都是非匹配边。
2、寻找增广路path,把路径状态取反,得到一个更大的匹配S‘;
3、重复第2步,直至图中不存在增广路。
算法的关键在于如何寻找一条增广路。我们尝试给每一个左部点寻找一个匹配的右部节点y。x与y能匹配有两种条件:(1)y本身就是非匹配点,此时边(x,y)自身构成一条长度为1的增广路。(2)y已经匹配了x’,但是从x‘出发还能找到另一个节点y’与之匹配。此时路径存在增广路x~y~x‘~y’;
我们可以采用深度优先搜索的方法,递归的从x寻找增广路,如果找到,在回溯的过程中正好把增广路上边的状态取反。
bool dfs(int x){
for(int i=lin[x];i;i=Next[i]){
int y=ver[i];
if(!v[y]){
v[y]=1;
if(!match[y]||dfs(match[y])){
return true;
match[y]=x;
}
}
}
return false;
}
int main(){
for(int i=1;i<=n;++i){
memset(v,0,sizeof(v));
if(dfs(i)) ans++;
}
}