机器学习基础


定位:

  1. 课程以算法、案例为驱动的学习,伴随浅显易懂的数学知识
  2. 作为人工智能领域(数据挖掘/机器学习方向)的提升课程,掌握更深更有效的解决问题技能

目标

  1. 应用Scikit-learn实现数据集的特征工程
  2. 掌握机器学习常见算法原理
  3. 应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题

1. 机器学习概述

了解机器学习定义以及应用场景
说明机器学习算法监督学习与无监督学习的区别
说明监督学习中的分类、回归特点
说明机器学习算法目标值的两种数据类型
说明机器学习(数据挖掘)的开发流程

1.1 人工智能概述

1.1.1 机器学习与人工智能、深度学习

在这里插入图片描述
机器学习和人工智能,深度学习的关系

  • 机器学习是人工智能的一个实现途径
  • 深度学习是机器学习的一个方法发展而来

1.1.2 机器学习、深度学习能做些什么

机器学习的应用场景非常多,可以说渗透到了各个行业领域当中。医疗、航空、教育、物流、电商等等领域的各种场景。
在这里插入图片描述

1.2 什么是机器学习

机器学习是从数据自动分析获得模型,并利用模型对未知数据进行预测。
在这里插入图片描述

1.2.1 数据集构成

结构:特征值+目标值
在这里插入图片描述
对于每一行数据我们可以称之为样本。
有些数据集可以没有目标值:
在这里插入图片描述

1.3 机器学习算法分类

目标

  • 说明机器学习算法监督学习与无监督学习的区别
  • 说明监督学习中的分类、回归特点

监督学习

  • 目标值:类别—分类问题
  • 目标值:连续性数据—回归问题

无监督学习

  • 目标值:无—无监督学习

在这里插入图片描述
在这里插入图片描述

1.4 机器学习开发流程

在这里插入图片描述

1.5 学习框架和资料介绍

需明确几点问题:

(1)算法是核心,数据与计算是基础

(2)找准定位

1.5.1 机器学习库与框架

在这里插入图片描述

2. 特征工程

了解特征工程在机器学习当中的重要性
应用sklearn实现特征预处理
应用sklearn实现特征抽取
应用sklearn实现特征选择
应用PCA实现特征的降维

2.1 数据集

目标
数据集的分为训练集和测试集
会使用sklearn的数据集

2.1.1 可用数据集

在这里插入图片描述
1 Scikit-learn工具介绍
在这里插入图片描述
Python语言的机器学习工具
Scikit-learn包括许多知名的机器学习算法的实现
Scikit-learn文档完善,容易上手,丰富的API
目前稳定版本0.19.1

2 安装

pip3 install Scikit-learn==0.19.1n

安装好之后可以通过以下命令查看是否安装成功

import sklearn

安装scikit-learn需要Numpy, Scipy等库
3 Scikit-learn包含的内容

scikitlearn接口
分类、聚类、回归
特征工程
模型选择、调优

2.1.2 sklearn数据集

1 scikit-learn数据集API介绍

  • 加载获取流行数据集
    sklearn.datasets
  • 获取小规模数据集,数据包含在datasets里
    datasets.load_*()
  • 获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/
    datasets.fetch_*(data_home=None)

2 sklearn小数据集
sklearn.datasets.load_iris()
加载并返回鸢尾花数据集
在这里插入图片描述
sklearn.datasets.load_boston()
加载并返回波士顿房价数据集
在这里插入图片描述
3 sklearn大数据集

sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)

  • subset:‘train’或者’test’,‘all’,可选,选择要加载的数据集。
  • 训练集的“训练”,测试集的“测试”,两者的“全部”

4 sklearn数据集的使用
以鸢尾花数据集为例:
在这里插入图片描述
sklearn数据集返回值介绍
load和fetch返回的数据类型datasets.base.Bunch(字典格式)

  • data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
  • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
  • DESCR:数据描述
  • feature_names:特征名,新闻数据,手写数字、回归数据集没有
  • target_names:标签名
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

def datasets_demo():
    '''
    sklearn数据集使用
    :return:
    '''
    #获取数据集
    iris=load_iris()
    print("鸢尾花数据集:\n",iris)
    print("查看数据集描述:\n",iris["DESCR"])
    print("查看特征值的名字:\n",iris.feature_names)
    print("查看特征值:\n",iris.data,iris.data.shape)
    # 数据集划分
    x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2,random_state=22)
    print("训练集的特征值:\n",x_train,x_train.shape)
    return None
if __name__=="__main__":
    # 代码1:skearn数据集的使用
    datasets_demo()

2.1.3 数据集的划分

机器学习一般的数据集会划分为两个部分:

  • 训练数据:用于训练,构建模型
  • 测试数据:在模型检验时使用,用于评估模型是否有效

划分比例:

  • 训练集:70% 80% 75%
  • 测试集:30% 20% 30%

数据集划分api
sklearn.model_selection.train_test_split(arrays, *options)

  • x 数据集的特征值
  • y 数据集的标签值
  • test_size 测试集的大小,一般为float
  • random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
  • return 测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split


def datasets_demo():
    """
    对鸢尾花数据集的演示
    :return: None
    """
    # 1、获取鸢尾花数据集
    iris = load_iris()
    print("鸢尾花数据集的返回值:\n", iris)
    # 返回值是一个继承自字典的Bench
    print("鸢尾花的特征值:\n", iris["data"])
    print("鸢尾花的目标值:\n", iris.target)
    print("鸢尾花特征的名字:\n", iris.feature_names)
    print("鸢尾花目标值的名字:\n", iris.target_names)
    print("鸢尾花的描述:\n", iris.DESCR)

    # 2、对鸢尾花数据集进行分割
    # 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
    print("x_train:\n", x_train.shape)
    # 随机数种子
    x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
    x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
    print("如果随机数种子不一致:\n", x_train == x_train1)
    print("如果随机数种子一致:\n", x_train1 == x_train2)

    return None

2.2 特征工程介绍

了解特征工程在机器学习当中的重要性
知道特征工程的分类

2.2.1 为什么需要特征工程(Feature Engineering)

机器学习领域的大神Andrew Ng(吴恩达)老师说“Coming up with features is difficult, time-consuming, requires expert knowledge. “Applied machine learning” is basically feature engineering. ”

注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已

2.2.2 什么是特征工程

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程
意义:会直接影响机器学习的效果

2.2.3 特征工程的位置与数据处理的比较

在这里插入图片描述
pandas:一个数据读取非常方便以及基本的处理格式的工具
sklearn:对于特征的处理提供了强大的接口

  • 特征工程包含内容
    1.特征抽取
    2.特征预处理
    3.特征降维

2.3 特征提取

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值