【机器学习300问】51、余弦相似度一般用在哪儿?

本文介绍了欧式距离和余弦相似度的基本概念,以及它们在衡量多维空间中点的相似性和文本、推荐系统、社交网络分析和机器翻译中的实际应用。重点强调了余弦相似度在处理评分数据尺度差异和高维特征空间中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基础知识扫盲

(1)欧式距离

        想象你在一个平坦的公园里,看到两个孩子分别在不同的游乐设施上玩耍。你想知道他们之间有多远。直觉的方法就是拉直测量绳,量一下他们直线距离有多远。在数学中,这就是所谓的欧式距离,也就是两点间直线的最短距离。在多维空间中,欧式距离考虑了每个维度的差异,使用勾股定理进行计算。

        欧式距离是定义在欧式空间中的两点之间的距离,考虑了向量各维度数值上的差异。对于两个点PQ,如果它们在二维空间中的坐标分别是(p_1, p_2)(q_1, q_2),那么它们之间的欧式距离d可以通过下面的公式计算:

d(P, Q) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2}

推广到在多维空间(n维)中的公式如下:

d(P, Q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值