For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<iostream>
#include<algorithm>
using namespace std;
int n1, n2;
int nums[4];
int nums_to_num(int s[])
{
int res = 0;
for(int i = 0; i < 4; i ++ )
res = res * 10 + s[i];
return res;
}
void num_put_in_arr(int num_i)
{
for(int i = 0; i < 4; i ++ )
{
nums[i] = num_i % 10;
num_i /= 10;
}
}
bool cmp(int a, int b)
{
return a > b;
}
int main()
{
int n;
cin >> n;
num_put_in_arr(n);
while(1)
{
//先将数字进行非升序排列
sort(nums, nums + 4, cmp);
n1 = nums_to_num(nums);
//再将数字进行非降序排列
sort(nums, nums + 4);
n2 = nums_to_num(nums);
printf("%04d - %04d = %04d\n", n1, n2, n1 - n2);
num_put_in_arr(n1 - n2);
if(n1 - n2 == 6174 || n1 - n2 == 0)
break;
}
}
感觉题目挺水的。但是卡了我俩小时(可能是因为我不专心)。。额。。都过了睡觉的点。。