如何理解机器学习和统计中的AUC?

1、如何理解机器学习和统计中的AUC?

首先,在试图弄懂AUC和ROC曲线之前,一定,一定要彻底理解混淆矩阵的定义!!!混淆矩阵中有着Positive、Negative、True、False的概念,其意义如下:称预测类别为1的为Positive(阳性),预测类别为0的为Negative(阴性)。预测正确的为True(真),预测错误的为False(伪)。对上述概念进行组合,就产生了如下的混淆矩阵:

在这里插入图片描述

TPRate的意义是所有真实类别为1的样本中,预测类别为1的比例。
FPRate的意义是所有真实类别为0的样本中,预测类别为1的比例。

如果上述概念都弄懂了,那么ROC曲线和AUC就so easy了:

按照定义,AUC即ROC曲线下的面积,而ROC曲线的横轴是FPRate,纵轴是TPRate,当二者相等时,即y=x,如下图:
在这里插入图片描述
表示的意义是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的。换句话说,分类器对于正例和负例毫无区分能力,和抛硬币没什么区别,一个抛硬币的分类器是我们能想象的最差的情况,因此一般来说我们认为AUC的最小值为0.5(当然也存在预测相反这种极端的情况,AUC小于0.5,这种情况相当于分类器总是把对的说成错的,错的认为是对的,那么只要把预测类别取反,便得到了一个AUC大于0.5的分类器)。而我们希望分类器达到的效果是:对于真实类别为1的样本,分类器预测为1的概率(即TPRate),要大于真实类别为0而预测类别为1的概率(即FPRate),即y>x,因此大部分的ROC曲线长成下面这个样子:

在这里插入图片描述

最理想的情况下,没有真实类别为1而错分为0的样本,TPRate一直为1,于是AUC为1,这便是AUC的极大值。

最后说说AUC的优势,AUC的计算方法同时考虑了分类器对于正例和负例的分类能力,在样本不平衡的情况下,依然能够对分类器作出合理的评价。例如在反欺诈场景,设欺诈类样本为正例,正例占比很少(假设0.1%),如果使用准确率评估,把所有的样本预测为负例,便可以获得99.9%的准确率。但是如果使用AUC,把所有样本预测为负例,TPRate和FPRate同时为0(没有Positive),与(0,0) (1,1)连接,得出AUC仅为0.5,成功规避了样本不均匀带来的问题。

作者:无涯
链接:https://www.zhihu.com/question/39840928/answer/241440370
来源:知乎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值