Step 1:下载github YOLOV5源码
https://github.com/ultralytics/yolov5
Step 2:配置CPU+pytorch版本环境
Win+R启动cmd,在命令提示符内输入以下命令,创建一个新环境:
conda create –n yolov-pytorch python=3.7
激活环境:
activate yolov-pytorch
Step 3:安装YOLOV仓库中requirements.txt的安装包
注意如果是CPU版本,那么先不装torch和torchvision
pip install -r requirements.txt
安装CPU版本的torch与torchvision,这里参考该博客
torch版本与torchvision对应,请参考
# CPU only
pip install torch==1.7.0+cpu torchvision==0.8.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
注意:配置环境的时候如果用的国内镜像,记得把VPN关了
成功配置如下:
Step 4:训练自己数据集教程
百度、谷歌出来的YOLO教程大多是老版的1,跟不上github仓库的更新频率,导致很多代码都用不了,推荐一个教程让大家少走弯路!
yolov5训练自己数据集,小白也能学会,详细教学
Step 5:测试命令
# 下载yolov5
-- git clone https://github.com/ultralytics/yolov5.git
或者在 https://github.com/ultralytics/yolov5 上下载zip包
-- 安装requirement.txt文件
# 测试自带的权重文件
python .\detect.py --source .\data\images --weights .\weight\yolov5n-7-k5.pt
# 收集数据集
从自然环境中收集数据集,但是图片最好具有多样性,采集在不同的天气、不同的时间、不同的光照强度、不同角度、不同来源的图片。
具体要求可搜索:YOLO官方推荐数据集需求。
# 标记数据集
使用labelImg 标记数据集,生成label
# 训练数据集
!python train.py --batch-size 2 --epochs 50 --data dataset1/data.yaml --weight weight/yolov5s.pt
# 测试
!python detect.py --source dataset1/test/images1 --weights runs/train/exp7/weights/best.pt --view-img
# 训练的比较好的一个weight
python .\detect.py --source C:\Users\gf66\Pictures\luoye --weights runs/train/leaf_det_model/weights/best.pt
python .\detect.py --source C:\Users\gf66\Pictures\luoye --weights runs/train/exp16/weights/best.pt
我的数据集下载地址:
「leaf」等文件 https://www.aliyundrive.com/s/7uoi6cn5WDF 提取码: h43e
训练好的权重文件下载地址:(下载后解压)
https://wwd.lanzoul.com/iRNlz07fk4da