YOLOV+pytorch+win10+CPU环境配置

Step 1:下载github YOLOV5源码

https://github.com/ultralytics/yolov5

Step 2:配置CPU+pytorch版本环境

Win+R启动cmd,在命令提示符内输入以下命令,创建一个新环境:

conda create –n yolov-pytorch python=3.7

激活环境:

activate yolov-pytorch

Step 3:安装YOLOV仓库中requirements.txt的安装包

注意如果是CPU版本,那么先不装torch和torchvision
在这里插入图片描述

pip install -r requirements.txt

安装CPU版本的torch与torchvision,这里参考该博客
torch版本与torchvision对应,请参考

# CPU only
pip install torch==1.7.0+cpu torchvision==0.8.1+cpu -f https://download.pytorch.org/whl/torch_stable.html

注意:配置环境的时候如果用的国内镜像,记得把VPN关了

成功配置如下:
在这里插入图片描述在这里插入图片描述

Step 4:训练自己数据集教程

百度、谷歌出来的YOLO教程大多是老版的1,跟不上github仓库的更新频率,导致很多代码都用不了,推荐一个教程让大家少走弯路!
yolov5训练自己数据集,小白也能学会,详细教学

Step 5:测试命令

# 下载yolov5
-- git clone https://github.com/ultralytics/yolov5.git
或者在 https://github.com/ultralytics/yolov5 上下载zip-- 安装requirement.txt文件

# 测试自带的权重文件
python .\detect.py --source .\data\images --weights .\weight\yolov5n-7-k5.pt

# 收集数据集
从自然环境中收集数据集,但是图片最好具有多样性,采集在不同的天气、不同的时间、不同的光照强度、不同角度、不同来源的图片。
具体要求可搜索:YOLO官方推荐数据集需求。

# 标记数据集
使用labelImg 标记数据集,生成label

# 训练数据集
!python train.py --batch-size 2 --epochs 50 --data dataset1/data.yaml --weight weight/yolov5s.pt

# 测试
!python detect.py --source dataset1/test/images1 --weights runs/train/exp7/weights/best.pt --view-img

# 训练的比较好的一个weight
python .\detect.py --source C:\Users\gf66\Pictures\luoye --weights runs/train/leaf_det_model/weights/best.pt

python .\detect.py --source C:\Users\gf66\Pictures\luoye --weights runs/train/exp16/weights/best.pt

我的数据集下载地址:
「leaf」等文件 https://www.aliyundrive.com/s/7uoi6cn5WDF 提取码: h43e

训练好的权重文件下载地址:(下载后解压)
https://wwd.lanzoul.com/iRNlz07fk4da
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值