文章目录
阿里云人工智能工程师ACP认证考试知识点辅助阅读
(Aliyun AI ACP 16)知识点:聚类分析
聚类分析(Clustering Analysis)
聚类分析是一种无监督学习方法,它将数据集中的样本分成不同的组或簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。聚类可以帮助发现数据的内在结构和模式,不依赖预先知道的类别标签,而是根据数据本身的相似性来组织数据。
应用范围
- 数据挖掘:市场细分,客户群体划分
- 社交网络分析:社群发现
- 生物信息学:基因表达数据分析,物种分类
- 地理信息系统:地区分区,热点分析
- 计算机视觉:图像分割,图像聚类
聚类算法分类与简介
划分聚类算法
k-means算法
k-means算法是一种迭代优化的过程,用于将数据集中的样本分配到k个不同的簇中。算法首先随机选择k个初始聚类中心,然后按照每个样本到这些中心的距离将其归类到最近的簇中。接着,重新计算每个簇的中心,即该簇中所有样本的平均值。这个过程反复执行,直到聚类中心不再显著改变或达到预设的最大迭代次数。k-means假设簇的形状接近圆形且大小相似,其优势在于简单快速,
聚类分析是一种无监督学习方法,包括k-means、k-medoids、层次聚类(凝聚型和分裂型)和密度-Based的DBSCAN算法。它在数据挖掘、社交网络分析等领域有广泛应用。k-means算法简单快速,但对初始聚类中心敏感;k-medoids更鲁棒,选择真实数据点作为聚类代表。DBSCAN能发现任意形状的簇,对噪声和离群点处理良好。CLIQUE算法适用于图数据聚类,寻找完全子图。
订阅专栏 解锁全文
747

被折叠的 条评论
为什么被折叠?



