Stable Diffusion文生图提示词实践:AnimateDiff动图生成

Stable Diffusion文生图提示词实践:AnimateDiff动图生成

环境

内容说明
镜像-
镜像区域-
环境安装本地22G显存

模型参数

参数
模型随机
VAEvae-ft-mse-840000-ema-pruned
LORA-
采样方法DPM++ 2M Karras
高清修复
尺寸512 * 512
AnimateDiff参数启动AnimateDiff即可。如果是图生图,参数会更多一些,包括重绘幅度、Latent power、Latent scale三个参数需要设置。

参考来源:

https://www.liblib.art

文生图

正向提示词

masterpiece,best quality,
1girl,<lora:v2_lora PanRight:1>,

效果图

  • 无Lora
    请添加图片描述

  • 有Lora:<lora:v2_lora PanRight:1>,
    请添加图片描述

效率

用时:39.7 sec.

A: 4.97 GB, R: 6.61 GB, Sys: 7.9/22 GB (35.7%)

AnimateDiff版本说明

在使用Stable Diffusion安装AnimateDiff插件时,默认会安装最新版。

  • 注意:最新版AnimateDiff有可能与SD版本不一致,此时会导致动图生成报错。解决办法是降级AnimateDiff版本,以下是本机切换后的版本:
    在这里插入图片描述

其他文章推荐:

专栏 : 人工智能基础知识点

序号文章
1(Aliyun AI ACP 01)人工智能与人工智能技术概述
2(Aliyun AI ACP 02)阿里云人工智能产品体系
3(Aliyun AI ACP 03)阿里云机器学习平台PAI
4(Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
5(Aliyun AI ACP 05)视觉智能基础知识:视觉智能基础知识详解
6(Aliyun AI ACP 06)视觉智能基础知识:视觉智能常用模型与算法
7(Aliyun AI ACP 07)智能语音处理基础知识:语音信号处理
8(Aliyun AI ACP 08)智能语音处理基础知识:语音识别、语音合成
9(Aliyun AI ACP 09)自然语言处理基础知识
10(Aliyun AI ACP 10)阿里云视觉智能
11(Aliyun AI ACP 11)阿里云智能语音交互技术
12(Aliyun AI ACP 12)阿里云自然语言处理NLP
13(Aliyun AI ACP 13)知识点:数据预处理
14(Aliyun AI ACP 14)知识点:回归分析
15(Aliyun AI ACP 15)知识点:分类分析
16(Aliyun AI ACP 16)知识点:聚类分析
17(Aliyun AI ACP 17)知识点:神经网络(深度学习)分析
18(Aliyun AI ACP 18)知识点:增强学习、迁移学习
19(Aliyun AI ACP 19)知识点:机器视觉常用算法原理与异同
20(Aliyun AI ACP 20)智能语音常用算法原理与异同
21(Aliyun AI ACP 21)自然语言处理常用算法原理与异同
22(Aliyun AI ACP 22)认证考试说明及题库样题(本系列终章)

专栏:大语言模型LLM

序号文章
1LLM概览:从起源至LangChain的资源整合,及对NLP领域的深远影响(LLM系列01)
2大语言模型LLM发展历程中的里程碑项目:国内外技术革新重塑自然语言处理(LLM系列02)
3大语言模型LLM分布式训练:大规模数据集上的并行技术全景探索(LLM系列03)
4大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)
5大语言模型LLM分布式训练:TensorFlow下的大语言模型训练实践(LLM系列05)
6大语言模型LLM分布式训练:PyTorch下的分布式训练(LLM系列06)
7大语言模型LLM分布式训练:PyTorch下的大语言模型训练流程(LLM系列07)
8大语言模型LLM微调技术深度解析:Fine-tuning、Adapter-Tuning与Prompt Tuning的作用机制、流程及实践应用(LLM系列08)
9大语言模型LLM参数微调:提升6B及以上级别模型性能(LLM系列009)
10大语言模型LLM推理加速主流框架(LLM系列10)
11大语言模型LLM推理加速:LangChain与ChatGLM3-6B的推理加速技术(LLM系列11)
12大语言模型LLM推理加速:Hugging Face Transformers优化LLM推理技术(LLM系列12)
13大语言模型LLM分布式框架:关键技术、流程与实施步骤(LLM系列13)
14大语言模型LLM分布式框架:PyTorch Lightning框架(LLM系列14)
15大语言模型LLM分布式框架:AllReduce算法与Parameter Server(LLM系列15)
16大语言模型LLM资源优化与部署:模型压缩与剪枝技术、量化推理技术(LLM系列16)
17大语言模型LLM资源优化与部署:知识蒸馏与模型精简(LLM系列17)
18大语言模型LLM算法框架演进:从RNN至Transformer架构(LLM系列18)
19大语言模型LLM算法框架演进:基于Hugging Face Transformers构建LLM应用(LLM系列19)
20大语言模型LLM编译优化:LLVM与TVM(LLM系列20)
### Stable Diffusion 文生视频 Prompt Examples 对于使用Stable Diffusion生成视频,提示词的设计至关重要。这些提示词不仅影响最终输出的质量,还决定了画的主题和发展方向。 #### 态场景描述 为了创建具有连贯性的态画面序列,可以采用逐步变化的方式设计提示词。例如,“A serene forest at dawn, transitioning smoothly into a bustling cityscape as the sun rises higher.” 这样的提示有助于构建从宁静森林逐渐过渡到繁华城市日景的画面流效果[^1]。 #### 时间流逝表现 通过加入时间因素来增强故事感。“An ancient castle under moonlight slowly turning into ruins over centuries while covered with ivy and moss,” 描述了一座古老城堡随着时间推移变成废墟的过程,在视觉上呈现出岁月变迁的效果[^2]。 #### 物理运模拟 如果想要实现物体移或人物作,则可以在提示中明确指出具体行为:“A group of dancers performing ballet gracefully on stage, their movements fluidly changing poses every few seconds。” 此处强调舞者优雅表演芭蕾的作细节以及姿态转换的时间间隔[^3]。 ```python prompts = [ "A serene forest at dawn, transitioning smoothly into a bustling cityscape as the sun rises higher.", "An ancient castle under moonlight slowly turning into ruins over centuries while covered with ivy and moss", "A group of dancers performing ballet gracefully on stage, their movements fluidly changing poses every few seconds." ] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

North_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值