Answering Complex Open-domain Questions Through Iterative Query Generation
论文:Answering Complex Open-domain Questions Through Iterative Query Generation
任务
对于目前的单跳检索和阅读问题回答系统来说,问题很少包含关于缺失实体的可检索线索。回答这样的问题需要进行多跳推理,必须收集关于缺失实体(或事实)的信息才能进行进一步的推理。本文提出了GOLDEN(Gold Entity)Retriever,它在阅读上下文和检索更多支持文档之间进行迭代,以回答开放领域的多跳问题。
方法(模型)
GOLDEN Retriever不使用不透明和计算代价较高的神经检索模型,而是根据问题和可用的上下文生成自然语言搜索查询,在每一步中,该模型也会使用前几跳推理的IR结果生成新的自然语言查询,并利用现成的信息检索系统来查询缺失的实体或证据来回答原问题,而不是纯粹依靠原问题来检索段落。这使得GOLDEN Retriever能够在保持可解释性的同时,有效地扩展开放领域的多跳推理。
- GOLDEN Retriever
在推理的第一跳中,GOLDEN Retriever基于给定的原始问题q,从中生成一个检索支持文档 d 1 d_1 d1,然后对后续的每一个推理步骤 ( k = 2 , . . . . . . , S ) (\ k = 2,......,S\ ) ( k=2,......,S ),GOLDEN Retriever从问题和可用上下文